Cardiac fibroblasts produce and degrade extracellular matrix and are critical in regulating cardiac remodeling and hypertrophy. Cytokines such as transforming growth factor-beta (TGF-beta) play a fundamental role in the development of tissue fibrosis by stimulating matrix deposition and other profibrotic responses, but less is known about pathways that might inhibit fibrosis. Increased cAMP formation inhibits myofibroblast differentiation and collagen production by cardiac fibroblasts, but the mechanism of this inhibition is not known. We sought to characterize the signaling pathways by which cAMP-elevating agents alter collagen expression and myofibroblast differentiation. Treatment with 10 microM forskolin or isoproterenol increased cAMP production and cAMP response element binding protein (CREB) phosphorylation in cardiac fibroblasts and inhibited serum- or TGF-beta-stimulated collagen synthesis by 37% or more. These same cAMP-elevating agents blunted TGF-beta-stimulated expression of collagen I, collagen III, and alpha-smooth muscle actin. Forskolin or isoproterenol treatment blocked the activation of extracellular signal-regulated kinase 1/2 (ERK1/2) induced by TGF-beta despite the fact that these cAMP-elevating agents stimulated ERK1/2 activation on their own. cAMP-elevating agents also attenuated the activation of c-Jun NH(2)-terminal kinase and reduced binding of the transcriptional coactivator CREB-binding protein 1 to transcriptional complexes containing Smad2, Smad3, and Smad4. Pharmacological inhibition of ERK completely blocked TGF-beta-stimulated collagen gene expression, but expression of an active mutant of MEK was additive with TGF-beta treatment. Thus, cAMP-elevating agents inhibit the profibrotic effects of TGF-beta in cardiac fibroblasts largely through inhibiting ERK1/2 phosphorylation but also by reducing Smad-mediated recruitment of transcriptional coactivators.

Download full-text PDF

Source
http://dx.doi.org/10.1124/mol.106.028951DOI Listing

Publication Analysis

Top Keywords

cardiac fibroblasts
20
camp-elevating agents
20
transforming growth
8
collagen synthesis
8
extracellular signal-regulated
8
signal-regulated kinase
8
kinase 1/2
8
increased camp
8
myofibroblast differentiation
8
forskolin isoproterenol
8

Similar Publications

Arrhythmogenic cardiomyopathy (ACM) is a genetic form of heart failure that affects 1 in 5000 people globally and is caused by mutations in cardiac desmosomal proteins including , and Individuals with ACM suffer from ventricular arrhythmias, sudden cardiac death, and heart failure. There are few effective treatments and heart transplantation remains the best option for many affected individuals. Here we performed single nucleus RNA sequencing (snRNAseq) and spatial transcriptomics on myocardial samples from patients with ACM and control donors.

View Article and Find Full Text PDF

Contemporary therapies following heart failure center on regenerative approaches to account for the loss of cardiomyocytes and limited regenerative capacity of the adult heart. While the delivery of cardiac progenitor cells has been shown to improve cardiac function and repair following injury, recent evidence has suggested that their paracrine effects (or secretome) provides a significant contribution towards modulating regeneration, rather than the progenitor cells intrinsically. The direct delivery of secretory biomolecules, however, remains a challenge due to their lack of stability and tissue retention, limiting their prolonged therapeutic efficacy.

View Article and Find Full Text PDF

Comprehensive analysis of scRNA-seq and bulk RNA-seq reveals the non-cardiomyocytes heterogeneity and novel cell populations in dilated cardiomyopathy.

J Transl Med

January 2025

State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200120, China.

Background: Dilated cardiomyopathy (DCM) is one of the most common causes of heart failure. Infiltration and alterations in non-cardiomyocytes of the human heart involve crucially in the occurrence of DCM and associated immunotherapeutic approaches.

Methods: We constructed a single-cell transcriptional atlas of DCM and normal patients.

View Article and Find Full Text PDF

Chronic heart failure, caused by myocardial fibrosis after acute myocardial infarction (AMI), remains a serious clinical problem that needs urgent resolution. Nitro-oleic acid (OA-NO), an electrophilic nitro-fatty acid found in human plasma, is believed to regulate various pathophysiological functions, particularly anti-inflammation and anti-fibrosis. However, the role of OA-NO in AMI remains unexplored.

View Article and Find Full Text PDF

Background: Liver fibrosis is caused by chronic toxic or cholestatic liver injury. Fibrosis results from the recruitment of myeloid cells into the injured liver, the release of inflammatory and fibrogenic cytokines, and the activation of myofibroblasts, which secrete extracellular matrix, mostly collagen type I. Hepatic myofibroblasts originate from liver-resident mesenchymal cells, including HSCs and bone marrow-derived CD45+ collagen type I+ expressing fibrocytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!