To evaluate the role of pulmonary surfactant in the prevention of lung injury caused by mechanical ventilation (MV) at low end-expiratory volumes, lung mechanics and morphometry were assessed in three groups of eight normal, open-chest rabbits ventilated for 3-4 h at zero end-expiratory pressure (ZEEP) with physiological tidal volumes (Vt = 10 ml/kg). One group was left untreated (group A); the other two received surfactant intratracheally (group B) or aerosolized dioctylsodiumsulfosuccinate (group C) before MV on ZEEP. Relative to initial MV on positive end-expiratory pressure (PEEP; 2.3 cmH(2)O), quasi-static elastance (Est) and airway (Rint) and viscoelastic resistance (Rvisc) increased on ZEEP in all groups. After restoration of PEEP, only Rint (124%) remained elevated in group A, only Est (36%) was significantly increased in group B, whereas in group C, Est, Rint, and Rvisc were all markedly augmented (274, 253, and 343%). In contrast, prolonged MV on PEEP had no effect on lung mechanics of eight open-chest rabbits (group D). Lung edema developed in group C (wet-to-dry ratio = 7.1), but not in the other groups. Relative to group D, both groups A and C, but not B, showed histological indexes of bronchiolar injury, whereas all groups exhibited an increased number of polymorphonuclear leukocytes in alveolar septa, which was significantly greater in group C. In conclusion, administration of exogenous surfactant largely prevents the histological and functional damage of prolonged MV at low lung volumes, whereas surfactant dysfunction worsens the functional alterations, also because of edema formation and, possibly, increased inflammatory response.

Download full-text PDF

Source
http://dx.doi.org/10.1152/japplphysiol.00405.2006DOI Listing

Publication Analysis

Top Keywords

open-chest rabbits
12
group
11
lung injury
8
normal open-chest
8
lung mechanics
8
end-expiratory pressure
8
group est
8
lung
5
groups
5
dependence lung
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!