Syntaxin 1A promotes the endocytic sorting of EAAC1 leading to inhibition of glutamate transport.

J Cell Sci

Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China.

Published: September 2006

The neuronal glutamate transporter, excitatory amino-acid carrier 1 (EAAC1), plays an important role in the modulation of neurotransmission and contributes to synthesis of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) and to epileptogenesis. However, the mechanisms that regulate EAAC1 endocytic sorting and function remain largely unknown. Here, we first demonstrate that EAAC1 undergoes internalization through the clathrin-mediated pathway and further show that syntaxin 1A, a key molecule in synaptic exocytosis, potentiates EAAC1 internalization, thus leading to the functional inhibition of EAAC1. In the presence of the transmembrane domain of syntaxin 1A, its H3 coiled-coil domain of syntaxin 1A is necessary and sufficient for the inhibition of EAAC1. Furthermore, specific suppression of endogenous syntaxin 1A significantly blocked EAAC1 endocytic sorting and lysosomal degradation promoted by kainic acid, a drug for kindling the animal model of human temporal lobe epilepsy in rat, indicating a potential role of syntaxin 1A in epileptogenesis. These findings provide new evidence that syntaxin 1A serves as an intrinsic enhancer to EAAC1 endocytic sorting and further suggest that syntaxin 1A is conversant with both ;ins' and ;outs' of synaptic neurotransmission.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jcs.03151DOI Listing

Publication Analysis

Top Keywords

endocytic sorting
16
eaac1 endocytic
12
eaac1
9
syntaxin
8
inhibition eaac1
8
domain syntaxin
8
syntaxin promotes
4
endocytic
4
promotes endocytic
4
sorting
4

Similar Publications

Endocytic recycling is central to circadian collagen fibrillogenesis and disrupted in fibrosis.

Elife

January 2025

Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.

Collagen-I fibrillogenesis is crucial to health and development, where dysregulation is a hallmark of fibroproliferative diseases. Here, we show that collagen-I fibril assembly required a functional endocytic system that recycles collagen-I to assemble new fibrils. Endogenous collagen production was not required for fibrillogenesis if exogenous collagen was available, but the circadian-regulated vacuolar protein sorting (VPS) 33b and collagen-binding integrin α11 subunit were crucial to fibrillogenesis.

View Article and Find Full Text PDF

Phostensin (PTS) encoded by KIAA1949 binds to protein phosphatase 1, F-actin, Eps 15 homology domain-containing protein 1 (EHD1) and EHD4. Most EHD-binding proteins contain a consensus motif, Asn-Pro-Phe (NPF), which interacts with the C-terminal EH domain of EHD proteins. Nevertheless, the NPF motif is absent in PTS.

View Article and Find Full Text PDF

Unlabelled: Endocytic recycling of transmembrane proteins is essential to cell signaling, ligand uptake, protein traffic and degradation. The intracellular domains of many transmembrane proteins are ubiquitylated, which promotes their internalization by clathrin-mediated endocytosis. How might this enhanced internalization impact endocytic uptake of transmembrane proteins that lack ubiquitylation? Recent work demonstrates that diverse transmembrane proteins compete for space within highly crowded endocytic structures, suggesting that enhanced internalization of one group of transmembrane proteins may come at the expense of other groups.

View Article and Find Full Text PDF

Manganese is a potent inducer of lysosomal activity that inhibits de novo HBV infection.

PLoS Pathog

January 2025

Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, China.

Sodium taurocholate co-transporting polypeptide (NTCP) has been identified as an entry receptor for hepatitis B virus (HBV), but the molecular events of the viral post-endocytosis steps remain obscure. In this study, we discovered that manganese (Mn) could strongly inhibit HBV infection in NTCP-reconstituted HepG2 cells without affecting viral replication. We therefore profiled the antiviral effects of Mn2+ in an attempt to elucidate the regulatory mechanisms involved in early HBV infection.

View Article and Find Full Text PDF

The evolutionarily conserved Notch signaling pathway controls cell-cell communication, enacting cell fate decisions during development and tissue homeostasis. Its dysregulation is associated with a wide range of diseases, including congenital disorders and cancers. Signaling outputs depend on maturation of Notch receptors and trafficking to the plasma membrane, endocytic uptake and sorting, lysosomal and proteasomal degradation, and ligand-dependent and independent proteolytic cleavages.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!