Oncogenic mutations in the K-ras gene occur in approximately 50% of human colorectal cancers. However, the precise role that K-ras oncogenes play in tumor formation is still unclear. To address this issue, we have conditionally expressed an oncogenic K-ras(V12) allele in the small intestine of adult mice either alone or in the context of Apc deficiency. We found that expression of K-ras(V12) does not affect normal intestinal homeostasis or the immediate phenotypes associated with Apc deficiency. Mechanistically we failed to find activation of the Raf/MEK/ERK pathway, which may be a consequence of the up-regulation of a number of negative feedback loops. However, K-ras(V12) expression accelerates intestinal tumorigenesis and confers invasive properties after Apc loss over the long term. In renal epithelium, expression of the oncogenic K-ras(V12) allele in the absence of Apc induces the rapid development of renal carcinoma. These tumors, unlike those of intestinal origin, display activation of the Raf/MEK/ERK and Akt signaling pathways. Taken together, these data indicate that normal intestinal and kidney epithelium are resistant to malignant transformation by an endogenous K-ras oncogene. However, activation of K-ras(V12) after Apc loss results in increased tumorigenesis with distinct kinetics. Whereas the effect of K-ras oncogenes in the intestine can been observed only after long latencies, they result in rapid carcinogenesis in the kidney epithelium. These data imply a window of opportunity for anti-K-ras therapies after tumor initiation in preventing tumor growth and invasion.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1599922 | PMC |
http://dx.doi.org/10.1073/pnas.0604130103 | DOI Listing |
Proc Natl Acad Sci U S A
November 2024
Department of Physiology, School of Medicine, Southeast University, Nanjing 210009, China.
White matter (WM) abnormalities are an emerging feature of schizophrenia, yet the underlying pathophysiological mechanisms are largely unknown. Disruption of ErbB signaling, which is essential for peripheral myelination, has been genetically associated with schizophrenia and WM lesions in schizophrenic patients. However, the roles of ErbB signaling in oligodendrocytes remain elusive.
View Article and Find Full Text PDFBlood
October 2024
Division of Hematology/Oncology, University of Florida Health Cancer Center, University of Florida, Gainesville, FL.
The histone H3 at lysine 27 (H3K27) demethylase lysine demethylase 6A (KDM6A) is a tumor suppressor in multiple cancers, including multiple myeloma (MM). We created isogenic MM cells disrupted for KDM6A and tagged the endogenous protein to facilitate genome-wide studies. KDM6A binds genes associated with immune recognition and cytokine signaling.
View Article and Find Full Text PDFJCI Insight
September 2023
Department of Pediatrics, UCSF, San Francisco, California, USA.
A T50I substitution in the K-Ras interswitch domain causes Noonan syndrome and emerged as a third-site mutation that restored the in vivo transforming activity and constitutive MAPK pathway activation by an attenuated KrasG12D,E37G oncogene in a mouse leukemia model. Biochemical and crystallographic data suggested that K-RasT50I increases MAPK signal output through a non-GTPase mechanism, potentially by promoting asymmetric Ras:Ras interactions between T50 and E162. We generated a "switchable" system in which K-Ras mutant proteins expressed at physiologic levels supplant the fms like tyrosine kinase 3 (FLT3) dependency of MOLM-13 leukemia cells lacking endogenous KRAS and used this system to interrogate single or compound G12D, T50I, D154Q, and E162L mutations.
View Article and Find Full Text PDFCell Chem Biol
October 2023
Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK. Electronic address:
Targeted protein degradation (TPD), induced by enforcing target proximity to an E3 ubiquitin ligase using small molecules has become an important drug discovery approach for targeting previously undruggable disease-causing proteins. However, out of over 600 E3 ligases encoded by the human genome, just over 10 E3 ligases are currently utilized for TPD. Here, using the affinity-directed protein missile (AdPROM) system, in which an anti-GFP nanobody was linked to an E3 ligase, we screened over 30 E3 ligases for their ability to degrade 4 target proteins, K-RAS, STK33, β-catenin, and FoxP3, which were endogenously GFP-tagged.
View Article and Find Full Text PDFFront Immunol
June 2023
Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.
Introduction: Toll-like receptors (TLRs) are an extensive group of proteins involved in host defense processes that express themselves upon the increased production of endogenous damage-associated molecular patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs) due to the constant contact that airway epithelium may have with pathogenic foreign antigens. We have previously shown that COPD-like airway inflammation induced by exposure to an aerosolized lysate of nontypeable (NTHi) promotes tumorigenesis in a K-ras mutant mouse model of lung cancer, CCSP/LSL-K-ras (CC-LR) mouse.
Methods: In the present study, we have dissected the role of TLRs in this process by knocking out TLR2, 4, and 9 and analyzing how these deletions affect the promoting effect of COPD-like airway inflammation on K-ras-driven lung adenocarcinoma.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!