Much is known about beta2-adrenergic receptor trafficking and internalization following prolonged agonist stimulation. However, less is known about outward trafficking of the beta2-adrenergic receptor to the plasma membrane or the role that trafficking might play in the assembly of receptor signaling complexes, important for targeting, specificity, and rapidity of subsequent signaling events. Here, by using a combination of bioluminescence resonance energy transfer, bimolecular fluorescence complementation, and confocal microscopy, we evaluated the steps in the formation of the core receptor-G protein heterotrimer complex. By using dominant negative Rab and Sar GTPase constructs, we demonstrate that receptor dimers and receptor-G betagamma complexes initially associate in the endoplasmic reticulum, whereas G alpha subunits are added to the complex during endoplasmic reticulum-Golgi transit. We also observed that G protein heterotrimers adopt different trafficking itineraries when expressed alone or with stoichiometric co-expression with receptor. Furthermore, deliberate mistargeting of specific components of these complexes leads to diversion of other members from their normal subcellular localization, confirming the role of these early interactions in targeting and formation of specific signaling complexes.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M605012200DOI Listing

Publication Analysis

Top Keywords

signaling complexes
12
plasma membrane
8
trafficking beta2-adrenergic
8
beta2-adrenergic receptor
8
complexes
5
trafficking
5
receptor
5
transmembrane receptor
4
receptor core
4
signaling
4

Similar Publications

mTOR Signaling Regulates Multiple Metabolic Pathways in Human Lung Fibroblasts After TGF-β and in Pulmonary Fibrosis.

Am J Physiol Lung Cell Mol Physiol

January 2025

Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637.

Idiopathic pulmonary fibrosis is a fatal disease characterized by the TGF-β-dependent activation of lung fibroblasts, leading to excessive deposition of collagen proteins and progressive replacement of healthy lung with scar tissue. We and others have shown that TGF-β-mediated activation of the Mechanistic Target of Rapamycin Complex 1 (mTORC1) and downstream upregulation of Activating Transcription Factor 4 (ATF4) promote metabolic reprogramming in lung fibroblasts characterized by upregulation of the de synthesis of glycine, the most abundant amino acid found in collagen protein. Whether mTOR and ATF4 regulate other metabolic pathways in lung fibroblasts has not been explored.

View Article and Find Full Text PDF

Canonical and noncanonical NOTCH signaling in the nongenetic resistance of cancer: distinct and concerted control.

Front Med

January 2025

Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China.

Therapeutic resistance in cancer is responsible for numerous cancer deaths in clinical practice. While target mutations are well recognized as the basis of genetic resistance to targeted therapy, nontarget mutation resistance (or nongenetic resistance) remains poorly characterized. Despite its complex and unintegrated mechanisms in the literature, nongenetic resistance is considered from our perspective to be a collective response of innate or acquired resistant subpopulations in heterogeneous tumors to therapy.

View Article and Find Full Text PDF

The death signaling complex comprising extrasynaptic NMDAR and TRPM4 plays a pivotal role in the pathogenesis of ischemic stroke. Targeting the protein-protein interactions between NMDAR and TRPM4 represents a promising therapeutic strategy for ischemic stroke. Herein, we describe the discovery of a novel series of NMDAR/TRPM4 interaction interface inhibitors aimed at enhancing neuroprotective efficacy and optimizing pharmacokinetic profiles.

View Article and Find Full Text PDF

Dynamic Features Driven by Stochastic Collisions in a Nanopore for Precise Single-Molecule Identification.

J Am Chem Soc

January 2025

Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.

Nanopore technology holds great potential for single-molecule identification. However, extracting meaningful features from ionic current signals and understanding the molecular mechanisms underlying the specific features remain unresolved. In this study, we uncovered a distinctive ionic current pattern in a K238Q aerolysin nanopore, characterized by transient spikes superimposed on two stable transition states.

View Article and Find Full Text PDF

αβT cells protect vertebrates against many diseases, optimizing surveillance using mechanical force to distinguish between pathophysiologic cellular alterations and normal self-constituents. The multi-subunit αβT-cell receptor (TCR) operates outside of thermal equilibrium, harvesting energy via physical forces generated by T-cell motility and actin-myosin machinery. When a peptide-bound major histocompatibility complex molecule (pMHC) on an antigen presenting cell is ligated, the αβTCR on the T cell leverages force to form a catch bond, prolonging bond lifetime, and enhancing antigen discrimination.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!