The first step of homology-dependent repair of DNA double-strand breaks is the strand-specific processing of DNA ends to generate 3' single-strand tails. Despite its importance, the molecular mechanism underlying end processing is poorly understood in eukaryotic cells. We have taken a biochemical approach to investigate DNA end processing in nucleoplasmic extracts derived from the unfertilized eggs of Xenopus laevis. We found that double-strand DNA ends are specifically degraded in the 5' --> 3' direction in this system. The reaction consists of two steps: an ATP-dependent unwinding of double-strand ends and an ATP-independent 5' --> 3' degradation of single-strand tails. We also found that the Xenopus Werner syndrome protein, a member of the RecQ helicase family, plays an important role in DNA end processing. Mechanistically, Xenopus Werner syndrome protein (xWRN) is required for the unwinding of DNA ends but not for the degradation of single-strand tails. The xWRN-mediated end processing is remarkably similar to the end processing that has been proposed for the Escherichia coli RecQ helicase and RecJ single-strand nuclease, suggesting that this mechanism might be conserved in prokaryotes and eukaryotes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M605044200 | DOI Listing |
Anal Chem
January 2025
The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China.
Swift and efficient enrichment and isolation of extracellular vesicles (EVs) are crucial for enhancing precise disease diagnostics and therapeutic strategies, as well as elucidating the complex biological roles of EVs. Conventional methods of isolating EVs are often marred by lengthy and laborious processes. In this study, we introduce an innovative approach to enrich and isolate EVs by leveraging the capabilities of DNA nanotechnology.
View Article and Find Full Text PDFComput Struct Biotechnol J
December 2024
Systems Biology Center, Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
DNA holds immense potential as an emerging data storage medium. However, the recovery of information in DNA storage systems faces challenges posed by various errors, including IDS errors, strand breaks, and rearrangements, inevitably introduced during synthesis, amplification, sequencing, and storage processes. Sequence reconstruction, crucial for decoding, involves inferring the DNA reference from a cluster of erroneous copies.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Université Paris Cité, CNRS, Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, 75005, Paris, France.
Tetramethylammonium (TMA) is a ubiquitous cationic motif in biochemistry, found in the charged choline headgroup of membrane phospholipids and in tri-methylated lysine residues, which modulates histone-DNA interactions and impacts epigenetic mechanisms. TMA interactions with anionic species, particularly carboxylate groups of amino acid residues and extracellular sugars, are of substantial biological relevance, as these interactions mediate a wide range of cellular processes. This study investigates the molecular interactions between TMA and acetate, representing carboxylate-containing groups, using neutron scattering experiments complemented by force fields and molecular dynamics (MD) simulations.
View Article and Find Full Text PDFJ Med Chem
January 2025
Université de Caen Normandie, CERMN UR4258, Normandie Univ, F-14000 Caen, France.
UBE2N protein belongs to the UE2s family and plays a crucial role in DNA repair, making it an exciting target for the development of innovative anticancer therapies. With the aim of discovering UBE2N inhibitors (UBE2Ni), this perspective seeks to review and provide elements to guide the design of new compounds. We propose a chemoinformatic structural analysis of the protein and its areas of interaction with its different partners.
View Article and Find Full Text PDFCardiovasc Diabetol
January 2025
Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, 29010, Málaga, Spain.
Background: The prevalence of obesity and type 2 diabetes mellitus (T2DM) is rising globally, particularly among children exposed to adverse intrauterine environments, such as those associated with gestational diabetes mellitus (GDM). Epigenetic modifications, specifically DNA methylation, have emerged as mechanisms by which early environmental exposures can predispose offspring to metabolic diseases. This study aimed to investigate DNA methylation differences in children born to mothers with GDM compared to non-GDM mothers, using saliva samples, and to assess the association of these epigenetic patterns with early growth measurements.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!