Protein L-isoaspartyl methyltransferase (PIMT) catalyzes repair of L-isoaspartyl peptide bonds, a major source of protein damage under physiological conditions. PIMT knock-out (KO) mice exhibit brain enlargement and fatal epileptic seizures. All organs accumulate isoaspartyl proteins, but only the brain manifests an overt pathology. To further explore the role of PIMT in brain function, we undertook a global analysis of endogenous substrates for PIMT in mouse brain. Extracts from PIMT-KO mice were subjected to two-dimensional gel electrophoresis and blotted onto membranes. Isoaspartyl proteins were radiolabeled on-blot using [methyl-(3)H]S-adenosyl-L-methionine and recombinant PIMT. Fluorography of the blot revealed 30-35 (3)H-labeled proteins, 22 of which were identified by peptide mass fingerprinting. These isoaspartate-prone proteins represent a wide range of cellular functions, including neuronal development, synaptic transmission, cytoskeletal structure and dynamics, energy metabolism, nitrogen metabolism, pH homeostasis, and protein folding. The following five proteins, all of which are rich in neurons, accumulated exceptional levels of isoaspartate: collapsin response mediator protein 2 (CRMP2/ULIP2/DRP-2), dynamin 1, synapsin I, synapsin II, and tubulin. Several of the proteins identified here are prone to age-dependent oxidation in vivo, and many have been identified as autoimmune antigens, of particular interest because isoaspartate can greatly enhance the antigenicity of self-peptides. We propose that the PIMT-KO phenotype results from the cumulative effect of isoaspartate-related damage to a number of the neuron-rich proteins detected in this study. Further study of the isoaspartate-prone proteins identified here may help elucidate the molecular basis of one or more developmental and/or age-related neurological diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M606958200 | DOI Listing |
Geroscience
January 2025
Buck Institute for Research On Aging, Novato, CA, 94945, USA.
Cells are subjected to dynamic mechanical environments which impart forces and induce cellular responses. In age-related conditions like pulmonary fibrosis, there is both an increase in tissue stiffness and an accumulation of senescent cells. While senescent cells produce a senescence-associated secretory phenotype (SASP), the impact of physical stimuli on both cellular senescence and the SASP is not well understood.
View Article and Find Full Text PDFJ Gastrointest Cancer
January 2025
Colorectal Research Center, Imam Khomeini Hospital complex, Tehran University of Medical Sciences, Keshavarz Blvd, Tehran, Iran.
Purpose: Carcinoembryonic antigen (CEA) is an important prognostic factor for rectal cancer. This study aims to introduce a novel cutoff point for CEA within the normal range to improve prognosis prediction and enhance patient stratification in rectal cancer patients.
Methods: A total of 316 patients with stages I to III rectal cancer who underwent surgical tumor resection were enrolled.
Mol Biol Rep
January 2025
Pediatric Rheumatology Department, Faculty of Medicine, Cairo University, Cairo, Egypt.
Background: Interleukin-1 receptor-associated kinase1 (IRAK1) plays a considerable role in the inflammatory signaling pathway. The current study aimed to identify any association between (rs1059703) single nucleotide polymorphism (SNP) and vulnerability to rheumatological diseases in the pediatric and adult Egyptian population.
Patients And Methods: The current study included four patient groups: adult Systemic lupus erythematosus (SLE), Rheumatoid arthritis (RA), juvenile systemic lupus erythematosus (JSLE), and juvenile idiopathic arthritis (JIA).
Mol Divers
January 2025
State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou, 550025, People's Republic of China.
This study focuses on the design, synthesis, and evaluation of benzimidazole derivatives for their anti-tumor activity against A549 and PC-3 cells. Initial screening using the MTT assay identified compound 5m as the most potent inhibitor of A549 cells with an IC of 7.19 μM, which was superior to the positive agents 5-Fluorouracil and Gefitinib.
View Article and Find Full Text PDFPurinergic Signal
January 2025
International Joint Research Centre On Purinergic Signalling, School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
In a recent article published in Nature Communications (Shigetomi et al Nat Commun 15(1):6525, 2024), Shigetomi et al. identified that upregulated astrocytic purinergic P2Y receptors (P2YR), acting via the downstream molecule, insulin-like growth factor binding protein 2 (IGFBP2), play a crucial role in neuronal hyperexcitability. In epilepsy and stroke models, P2YR-IGFBP2 signaling was found to mediate astrocyte-driven neuronal hyperexcitability and so is a new contributor to astrocyte-neuron communication.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!