The Ran binding protein RanBPM interacts with TrkA receptor.

Neurosci Lett

National Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China.

Published: October 2006

AI Article Synopsis

  • RanBPM is a novel binding protein that interacts with neurotrophin receptors, specifically p75NTR and the tyrosine kinase receptor TrkA, through its SPRY motif in the intracellular domain.
  • The study utilized yeast two-hybrid, co-immunoprecipitation, and GST pull-down assays to confirm RanBPM's binding to TrkA and established that the interaction occurs in TrkA's tyrosine kinase domain.
  • Overexpression of RanBPM was found to inhibit NFAT-dependent luciferase expression induced by NGF, indicating its potential role in regulating neurotrophin-mediated gene transcription and neuronal signaling.

Article Abstract

RanBPM as a novel binding protein can interact with neurotrophin receptor p75NTR and tyrosine kinase receptor Met which has a similar tyrosine kinase structure as receptor TrkA has. Whether RanBPM interacts with neurotrophin receptor TrkA has not been established to date. In this study, using yeast two-hybrid system, it was identified that RanBPM bound to the intracellular domain (ICD) of neurotrophin receptor TrkA through its SPRY motif. We confirmed the formation of complexes between RanBPM and TrkA by co-immunoprecipitation studies and GST pull-down assays. The region of TrkA interacted with the SPRY domain of RanBPM was located in its tyrosine kinase domain. Furthermore, coimmunoprecipitaiton revealed endogenous RanBPM and receptors TrkA did interact in several mammalian cell lines. It was found that the overexpression of RanBPM could inhibit NGF-induced increase of nuclear factor of activated T cells (NFAT) dependent luciferase expression through its interaction with receptor TrkA, and NFAT transcriptional activity plays an important role in neuronal signal transduction. These data suggested that RanBPM could participate in neurotrophin-mediated gene transcription and expression by its binding to TrkA.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neulet.2006.06.059DOI Listing

Publication Analysis

Top Keywords

receptor trka
16
neurotrophin receptor
12
tyrosine kinase
12
ranbpm
9
trka
9
binding protein
8
ranbpm interacts
8
receptor
7
protein ranbpm
4
interacts trka
4

Similar Publications

Background: Cholinergic innervation is particularly vulnerable in many neurodegenerative diseases such as Alzheimer’s diseases. Nerve growth factor (NGF) plays a major role in the maintenance and function of cholinergic neurons, and a decrease in trophic signalling by NGF‐Tropomyosin receptor kinase A (TrkA) contributes to cholinergic and synaptic degeneration. E2511 is a novel small molecule TrkA biased positive allosteric modulator showing an increase in specific trophic signalling via direct binding to TrkA with a potential to recover and reinnervate damaged cholinergic neurons.

View Article and Find Full Text PDF

Silver nanoparticles (AgNPs) are spherical particles with a number of specific and unique physical (such as surface plasmon resonance, high electrical conductivity and thermal stability) as well as chemical (including antimicrobial activity, catalytic efficiency and the ability to form conjugates with biomolecules) properties. These properties allow AgNPs to exhibit desired interactions with the biological system and make them prospective candidates for use in antibacterial and anticancer activities. AgNPs have a quenching capacity, which produces reactive oxygen species and disrupts cellular processes (such as reducing the function of the mitochondria, damaging the cell membrane, inhibiting DNA replication and altering protein synthesis).

View Article and Find Full Text PDF

Tumor necrosis factor alpha (TNF-α) is a well-known pro-inflammatory cytokine originally recognized for its ability to induce apoptosis and cell death. However, recent research has revealed that TNF-α also plays a crucial role as a mediator of cell survival, influencing a wide range of cellular functions. The signaling of TNF-α is mediated through two distinct receptors, TNFR1 and TNFR2, which trigger various intracellular pathways, including NF-κB, JNK, and caspase signaling cascades.

View Article and Find Full Text PDF

Objective: ALK, ROS1, NTRK, and RET gene fusions and MET exon 14 skipping alterations represent fundamental predictive biomarkers for advanced non-small cell lung cancer (NSCLC) patients to ensure the best treatment choice. In this scenario, RNA-based NGS approach has emerged as an extremely useful tool for detecting these alterations. In this study, we report our NGS molecular records on ALK, ROS1, NTRK, and RET gene fusions and MET exon 14 skipping alterations detected by using a narrow RNA-based NGS panel, namely SiRe fusion.

View Article and Find Full Text PDF

Exploring the cellular and molecular basis of nerve growth factor in cerebral ischemia recovery.

Neuroscience

December 2024

Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225009, China. Electronic address:

Vascular obstruction often causes inadequate oxygen and nutrient supply to the brain. This deficiency results in cerebral ischemic injury, which significantly impairs neurological function. This review aimed to explore the neuroprotective and regenerative effects of nerve growth factor (NGF) in cerebral ischemic injury.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!