Purpose: We conducted statistical parametric comparison of fractional anisotropy (FA) images and quantified FA values to determine whether significant change occurs in the ischemic region.
Materials And Methods: The subjects were 20 patients seen within 24 h after onset of ischemia. For statistical comparison of FA images, a sample FA image was coordinated by the Talairach template, and each FA map was normalized. Statistical comparison was conducted using SPM99. Regions of interest were set in the same region on apparent diffusion coefficient (ADC) and FA maps, the region being consistent with the hyperintense region on diffusion-weighted images (DWIs). The contralateral region was also measured to obtain asymmetry ratios of ADC and FA.
Results: Regions with areas of statistical significance on FA images were found only in the white matter of three patients, although the regions were smaller than hyperintense regions on DWIs. The mean ADC and FA ratios were 0.64 +/- 0.16 and 0.93 +/- 0.09, respectively, and the degree of FA change was less than that of the ADC change. Significant change in diffusion anisotropy was limited to the severely infarcted core of the white matter.
Conclusion: We believe statistical comparison of FA maps to be useful for detecting different regions of diffusion anisotropy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11604-005-1535-z | DOI Listing |
Radiologie (Heidelb)
January 2025
Department of Radiology, Bezmialem Vakıf University, Istanbul, Turkey.
Purpose: To determine whether there is a difference in apparent diffusion coefficient (ADC) and fractional anisotropy (FA) values in white matter pathways in the subacute period after COVID-19 infection and to evaluate the correlation between diffusion tensor imaging (DTI) metrics and laboratory findings.
Material And Methods: The study included 64 healthy controls and 91 patients. Patients were classified as group 1 (all patients, n = 91), group 2 (outpatients, n = 58), or group 3 (inpatients, n = 33).
Brain
January 2025
Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA.
Although the pathophysiology of migraine involves a complex ensemble of peripheral and central nervous system changes that remain incompletely understood, the activation and sensitization of the trigeminovascular system is believed to play a major role. However, non-invasive, in vivo neuroimaging studies investigating the underlying neural mechanisms of trigeminal system abnormalities in human migraine patients are limited. Here, we studied 60 patients with migraine (55 females, mean age ± SD: 36.
View Article and Find Full Text PDFBrain Commun
May 2024
Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
Cortical thickness analyses have provided valuable insights into changes in cortical brain structure after stroke and their association with recovery. Across studies though, relationships between cortical structure and function show inconsistent results. Recent developments in diffusion-weighted imaging of the cortex have paved the way to uncover hidden aspects of stroke-related alterations in cortical microstructure, going beyond cortical thickness as a surrogate for cortical macrostructure.
View Article and Find Full Text PDFActa Radiol
January 2025
Radiology Department, Third Affiliated Hospital of Zhengzhou University, Zhengzhou City, PR China.
Background: Cerebral infarction is one of the most common diseases. Diffusion tensor imaging (DTI) has been used to evaluate for crossed cerebellar diaschisis (CCD) to observe the expression of repulsive guidance molecule a (RGMa), the axonal regeneration as well as the effect on neural functional recovery in the middle cerebral artery occlusion (MCAO) rat model.
Purpose: To certify the expression pattern of RGMa in cerebral infarction and the mechanism of CCD to provide a new target for clinical therapy.
Chaos
January 2025
Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
Spirals are a special class of excitable waves that have its significance in the understanding of cardiac arrests and neuronal transduction. In a theoretical model of the chemical Belousov-Zhabotinsky reaction system, we explore the dynamics of the spatiotemporal patterns that emerge out of competing reaction and diffusion phenomena. By modifying the existing mathematical models of the reaction kinetics, we have been able to explore the explicit effect of hydrogen ion concentration in the system, so as to achieve various regimes of wave activity, from stable spirals to oscillation death.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!