Motor neurons with different susceptibility to degeneration have been identified in amyotrophic lateral sclerosis (ALS). Increase of intracellular calcium has been proposed as a mediator, amplifying the damage through a positive feedback of the known pathological processes. Accordingly, the potential of motor neurons to limit calcium increases during injury might be proportional to their viability. A basic mechanism of reducing calcium amplitudes depends on the calcium-buffering capacity, determined by the calcium-binding protein content. In this study, oculomotor and hypoglossal neurons, prototypes of resistant and vulnerable motor neurons in ALS were examined in axotomy experiments. Total calcium-, parvalbumin-, and calbindin-D28k levels of motor neurons of adult mice were characterized by electron microscopic histochemistry and light microscopic immunostaining. In hypoglossal neurons, compared with oculomotor neurons, larger and more enduring increases of calcium were detected. The perikarya of hypoglossal neurons remained immunonegative for both parvalbumin and calbindin-D28k. Qualitatively, no major cell loss was noted after axotomy, but a decreased neuronal marker staining at days 1-14 suggested a reversible injury of hypoglossal neurons. Oculomotor neurons were not stained for calbindin-D28k but stained for parvalbumin in control conditions, staining which increased at postoperative days 7-14 before returning to baseline. Neuronal marker staining did not change in these cells during the observed period. The higher level of parvalbumin in resistant motor neurons and their ability to up-regulate parvalbumin after injury, paralleled by a smaller increase of intracellular calcium suggest that parvalbumin may have a protective effect in these cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cne.21041 | DOI Listing |
Sci Rep
January 2025
Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Chicago, IL, 60611, USA.
Corticospinal motor neurons (CSMN), located in the motor cortex of the brain, are one of the key components of the motor neuron circuitry. They are in part responsible for the initiation and modulation of voluntary movement, and their degeneration is the hallmark for numerous diseases, such as amyotrophic lateral sclerosis (ALS), hereditary spastic paraplegia, and primary lateral sclerosis. Cortical hyperexcitation followed by in-excitability suggests the early involvement of cortical dysfunction in ALS pathology.
View Article and Find Full Text PDFAutosomal-recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is an early-onset neurodegenerative disease caused by mutations in the SACS gene. The first two mutations were identified in French Canadian populations 20 years ago. The disease is now known as one of the most frequent recessive ataxias worldwide.
View Article and Find Full Text PDFCNS Neurosci Ther
January 2025
Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, the First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, China.
Aims: Neuron death is caused primarily by apoptosis after spinal cord injury (SCI). Autophagy, as a cellular response, can maintain cellular homeostasis to reduce apoptosis. We aimed to investigate the effect and the mechanism of vimentin knockdown on autophagy and neural recovery after SCI.
View Article and Find Full Text PDFNPJ Parkinsons Dis
January 2025
Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
The switch from oxidative phosphorylation to glycolysis is crucial for microglial activation. Recent studies highlight that histone lactylation promotes macrophage homeostatic gene expression via transcriptional regulation, but its role in microglia activation in Parkinson's disease (PD) remains unclear. Here, we demonstrated that inhibiting glycolysis with 2-deoxy-D-glucose alleviates microgliosis, neuroinflammation and dopaminergic neurons damage by reducing lactate accumulation in PD mice.
View Article and Find Full Text PDFChem Biol Interact
January 2025
Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China. Electronic address:
Copper, as a vital trace element and ubiquitous environmental pollutant, exhibits a positive correlation with the neurodegenerative diseases. Recent studies have highlighted ferroptosis's significance in heavy metal-induced neurodegenerative diseases, yet its role in copper-related neurotoxicity remains unclear. This study aimed to investigate the role of ferroptosis in copper-induced neurotoxicity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!