Toll-like receptor 3 (TLR3) is a component of the innate immune response that responds to dsRNA viruses and virus replication intermediates. In this study we show that activation of astrocytes with the dsRNA mimetic polyinosinic-cytidylic acid (pI:C) results in loss of expression of connexin43 (Cx43) mRNA and protein while upregulating the expression of the ionotropic P2 receptor P2X(4)R. Analysis of the signaling pathways involved failed to demonstrate a role for the p38 MAP kinase, ERK, or JNK signaling pathways whereas an inhibitor of the PI3 kinase/Akt pathway effectively blocked the action of pI:C. Using adenoviral vectors containing a super-repressor of NF-kappaB (NF-kappaB SR) construct or a dominant negative interferon regulatory factor 3 (dnIRF3) construct showed that inhibition of both transcription factors also blocked the effects of pI:C. To explore the functional consequences of pI:C activation we used a pore-forming assay for P2X(4)R activity and a scrape loading assay for gap junction intercellular communication (GJIC). No pore-forming activity consistent with functional P2X(4)R expression was detected in either control or activated astrocytes. In contrast, robust Lucifer yellow transfer indicative of GJIC was detected in resting cells that was lost following pI:C activation. The dnIRF3 construct failed to restore GJIC whereas the NF-kappaB SR or the NF-kappaB inhibitor BAY11-7082 and the PI3K inhibitor LY294002 all significantly reversed the effect of pI:C on GJ connectivity. We conclude that activation of the innate immune response in astrocytes is associated with functional loss of GJIC through a pathway involving NF-kappaB and PI3 kinase.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2701309PMC
http://dx.doi.org/10.1002/glia.20418DOI Listing

Publication Analysis

Top Keywords

involving nf-kappab
8
nf-kappab pi3
8
pi3 kinase
8
innate immune
8
immune response
8
signaling pathways
8
nf-kappab nf-kappab
8
dnirf3 construct
8
pic activation
8
nf-kappab
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!