AI Article Synopsis

  • The paper explores the diversity of synovial sarcomas (SSs), focusing on biphasic, monophasic fibrous, and poorly differentiated types, and their evaluation through tissue microarrays (TMAs) in a xenograft model.
  • Findings indicate that biphasic and monophasic fibrous synovial sarcomas exhibit a progression to a similar undifferentiated phenotype in xenografts, with notable expressions of certain proteins like bcl-2 and contribution to high mitotic indices.
  • Hierarchical clustering analysis suggests phenotypic variability among original tumors, but similarities in immunoexpression profiles in xenografts, while confirming genetic stability through detection of SYT-SSX transcripts in all

Article Abstract

This paper discusses the diversity of synovial sarcomas (SSs) [biphasic (BSS), monophasic fibrous (MFSS), and poorly differentiated (PDSS)] and tissue microarray (TMA) evaluation of the immunophenotypic and histological progression of SSs in nude mice using three TMAs comprising 11 primary SSs (8 MFSSs, 2 BSSs, and 1 PDSS) and their xenografts. BSS and MFSS progressively transformed to a similar undifferentiated phenotype with loss of glandular component in the xenografts. Epidermal growth factor receptor and SALL2 were expressed in primary tumors and xenografts. Enhanced bcl-2 and bax expression were noted in xenografts. Ki-67 overexpression in xenografts correlated with high mitotic index. Epithelial membrane antigen (EMA) and cytokeratin AE1/AE3 were detected in all original and xenografted SSs. Hierarchical clustering differentiated original MFSS and BSS, but their xenografts clustered together due to similar immunoexpression profile. Our study demonstrates definite phenotypic variability of BSS and MFSS in the xenografts. Differences in immunoexpression for various markers existed between primary tumor and xenografts but not between subtypes. Hierarchical clustering grouped TMA immunostaining data and confirmed immunophenotypic variability; however, it failed to reveal any immunophenotypic differences between SYT-SSX1 and SYT-SSX2 type tumors. Nonetheless, reverse-transcriptase-polymerase chain reaction detected SYT-SSX transcripts in all primary SSs and their xenografts, thereby demonstrating their genetic stability.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00428-006-0271-9DOI Listing

Publication Analysis

Top Keywords

xenografts
9
tissue microarray
8
synovial sarcomas
8
monophasic fibrous
8
primary sss
8
bss mfss
8
hierarchical clustering
8
primary
5
sss
5
microarray profiling
4

Similar Publications

Bladder cancer (BLCA) genomic profiling has identified molecular subtypes with distinct clinical characteristics and variable sensitivities to frontline therapy. BLCAs can be categorized into luminal or basal subtypes based on their gene expression. We comprehensively characterized nine human BLCA cell lines (UC3, UC6, UC9, UC13, UC14, T24, SCaBER, RT4V6 and RT112) into molecular subtypes using orthotopic xenograft models.

View Article and Find Full Text PDF

Design and Synthesis of Topoisomerases-Histone Deacetylase Dual Targeted Quinoline-Bridged Hydroxamates as Anticancer Agents.

J Med Chem

January 2025

Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda 151 401, India.

The multifactorial nature of cancer requires treatment that involves simultaneous targeting of associated overexpressed proteins and cell signaling pathways, possibly leading to synergistic effects. Herein, we present a systematic study that involves the simultaneous inhibition of human topoisomerases (hTopos) and histone deacetylases (HDACs) by multitargeted quinoline-bridged hydroxamic acid derivatives. These compounds were rationally designed considering pharmacophoric features and catalytic sites of the cross-talk proteins, synthesized, and assessed for their anticancer potential.

View Article and Find Full Text PDF

The infiltration of glioblastoma multiforme (GBM) is predominantly characterized by diffuse spread, contributing significantly to therapy resistance and recurrence of GBM. In this study, we reveal that microtubule deacetylation, mediated through the downregulation of fibronectin type III and SPRY domain-containing 1 (FSD1), plays a pivotal role in promoting GBM diffuse infiltration. FSD1 directly interacts with histone deacetylase 6 (HDAC6) at its second catalytic domain, thereby impeding its deacetylase activity on α-tubulin and preventing microtubule deacetylation and depolymerization.

View Article and Find Full Text PDF

Avenanthramide A potentiates Bim-mediated antineoplastic properties of 5-fluorouracil targeting KDM4C//GSK-3 negative feedback loop in colorectal cancer.

Acta Pharm Sin B

December 2024

Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China.

Chemoresistance to 5-fluorouracil (5-FU) is a significant challenge in treating colorectal cancer (CRC). Novel combined regimens to thwart chemoresistance are therefore urgently needed. Herein, we demonstrated that the combination of Avenanthramide A (AVN A) and 5-FU has significant therapeutic advantages against CRC.

View Article and Find Full Text PDF

Discovery of a potent PROTAC degrader for RNA demethylase FTO as antileukemic therapy.

Acta Pharm Sin B

December 2024

School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.

The fat mass and obesity-associated protein (FTO) is an RNA demethylase required for catalytic demethylation of -methyladenosine (mA); it is highly expressed and functions as an oncogene in acute myeloid leukemia (AML). Currently, the overarching objective of targeting FTO is to precisely inhibit the catalytic activity. Meanwhile, whether FTO degradation also exerts antileukemic effects remains unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!