In general excellent results cannot be guaranteed when using resin-based composites for posterior restorations. This is due to polymerization shrinkage which can still be regarded as the primary negative characteristic of composite resins. A review of available literature regarding the polymerization process, its flaws, and suggested strategies to avoid shrinkage stress was conducted. Several factors responsible for the polymerization process may negatively affect the integrity of the tooth-restoration complex. There is no straightforward way of handling adhesive restorative materials that can guarantee the reliability of a restoration. At present, the practitioner has to coexist with the problem of polymerization shrinkage and destructive shrinkage stress. However, evolving improvements associated with resin-based composite materials, dental adhesives, filling, and light curing techniques have improved the predictability of such restorations. This critical review paper is meant to be a useful contribution to the recognition and understanding of problems related to polymerization shrinkage and to provide clinicians with the opportunity to improve the quality of composite resin restorations.

Download full-text PDF

Source

Publication Analysis

Top Keywords

polymerization shrinkage
16
shrinkage stress
12
resin restorations
8
polymerization process
8
shrinkage
6
polymerization
5
review polymerization
4
stress current
4
current techniques
4
techniques posterior
4

Similar Publications

The present experiment aimed to formulate four ointments that included mixtures of plant extracts (, , , and ), apitherapy products (honey, propolis, and apilarnil) and natural polymers (collagen, chitosan, and the lyophilisate of egg white) in an ointment base. : In order to investigate the therapeutic properties of the ointments, experimental in vivo injury models (linear incision, circular excision, and thermal burns) were performed on laboratory animals, namely Wistar rats. The treatment was applied topically, once a day, for 21 days.

View Article and Find Full Text PDF

Selective laser sintering (SLS) is one of the prominent methods of polymer additive manufacturing (AM). A low-power laser source is used to directly melt and sinter polymer material into the desired shape. This study focuses on the utilization of the low-power laser SLS system to successfully manufacture metallic components through the development of a metal-polymer composite material.

View Article and Find Full Text PDF

In recent years, attempts were made to develop biomaterials using synthetic and natural polymers to induce osteogenesis of human mesenchymal stem cells (hMSCs). Poly(ε-caprolactone) (PCL) is one of the few synthetic polymers with the potential to differentiate hMSCs to bone. However, its potential is limited, attributed to its low strength; its fast crystallization rate also compromises its dimensional stability.

View Article and Find Full Text PDF

Chemical release data are essential for performing chemical risk assessments to understand the potential exposures arising from industrial processes. Often, these data are unknown or unavailable and must be estimated. A case study of volatile organic compound releases during extrusion-based additive manufacturing is used here to explore the viability of various regression methods for predicting chemical releases to inform chemical assessments.

View Article and Find Full Text PDF

Synthesis and Characterization of UV-Curable Resin with High Refractive Index for a Luminance-Enhancing Prism Film.

Polymers (Basel)

December 2024

Department of Chemical Engineering, Kwangwoon University, 20, Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea.

A novel monomer, 9-bis[4-(2-hydroxyethoxy)phenyl]fluorene di(mercaptopropionate), with a highly refractive index, purity, and excellent UV-curable properties, is synthesized through an optimized Fischer esterification process, reacting 9,9-bis[4-(2-hydroxyethoxy)phenyl]fluorene with 3-mercaptopropionic acid. The structural characterization of this monomer is performed using Fourier-transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, high-performance liquid chromatography, and liquid chromatography-mass spectrometry. The synthesis conditions are optimized using a design-of-experiments approach.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!