Doublecortin is a neuronal microtubule-stabilising protein, mutations of which cause mental retardation and epilepsy in humans. How doublecortin influences microtubule dynamics, and thereby brain development, is unclear. We show here by video microscopy that purified doublecortin has no effect on the growth rate of microtubules. However, it is a potent anti-catastrophe factor that stabilises microtubules by linking adjacent protofilaments and counteracting their outward bending in depolymerising microtubules. We show that doublecortin-stabilised microtubules are substrates for kinesin translocase motors and for depolymerase kinesins. In addition, doublecortin does not itself oligomerise and does not bind to tubulin heterodimers but does nucleate microtubules. In cells, doublecortin is enriched at the distal ends of neuronal processes and our data raise the possibility that the function of doublecortin in neurons is to drive assembly and stabilisation of non-centrosomal microtubules in these doublecortin-enriched distal zones. These distinct properties combine to give doublecortin a unique function in microtubule regulation, a role that cannot be compensated for by other microtubule-stabilising proteins and nucleating factors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1590004 | PMC |
http://dx.doi.org/10.1038/sj.emboj.7601335 | DOI Listing |
Exp Neurol
January 2025
Laboratory of Neurodegenerative Diseases and Neuroinjury Diseases, Wuxi, School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China; MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China. Electronic address:
Abnormal tryptophan metabolism is closely linked with neurological disorders. Research has shown that indoleamine 2,3-dioxygenase 1 (IDO-1), the first rate-limiting enzyme in tryptophan degradation, is upregulated in Parkinson's disease (PD). However, the precise role of IDO-1 in PD pathogenesis remains elusive.
View Article and Find Full Text PDFInt J Med Sci
January 2025
Department of Urology, Kidney and Urology Center, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China.
Doublecortin-like kinase 1 (DCLK1) has been revealed to be involved in modulating cancer stemness and tumor progression, but its role in prostate cancer (PCa) remains obscure. Castration-resistant and metastatic PCa exhibit aggressive behaviors, and current therapeutic approaches have shown limited beneficial effects on the overall survival rate of patients with advanced PCa. This study aimed to investigate the biological role and potential molecular mechanism of DCLK1 in the progression of PCa.
View Article and Find Full Text PDFFront Neural Circuits
January 2025
Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto, Japan.
Introduction: Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by deficits in social interaction and communication, along with restricted and repetitive behaviors. Both genetic and environmental factors contribute to ASD, with prenatal exposure to valproic acid (VPA) and nicotine being linked to increased risk. Impaired adult hippocampal neurogenesis, particularly in the ventral region, is thought to play a role in the social deficits observed in ASD.
View Article and Find Full Text PDFPsychiatry Investig
December 2024
Mental Health Research Institute, National Center for Mental Health, Seoul, Republic of Korea.
Objective: The coronavirus disease-2019 (COVID-19) pandemic's social isolation has significantly impacted mental health, increasing depression and anxiety. This study explores the effects of social isolation on both humans and mice, focusing on behavioral changes and hippocampal protein expression. It also investigates genetic alterations through single-cell RNA and whole-genome sequencing (WGS).
View Article and Find Full Text PDFMetab Brain Dis
January 2025
Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India.
The negative impact of repeated-mild traumatic brain injury (rmTBI) is profoundly seen in circadian-disrupted individuals. The unrelenting inflammation, glial activation, and gut dysbiosis are key neuropathological aberrations in the aftermath of rmTBI. In this study, we examined the impact of chitosan lactate (CL) on circadian disturbance (CD) + rmTBI-generated neurological dysfunctions and its prebiotic response on the gut-brain axis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!