Endocytosis is a process that is essential to the life of all eukaryotic cells. Laboratory strains of Dictyostelium are extremely efficient in the uptake of both particles and fluid. Many different cellular processes feed into the endocytic pathway, and many organelle-associated and cytoplasmic proteins, including the ones from the cytoskeleton, contribute to the efficiency of transit. Therefore mutants, especially in genes of unknown function, must be characterized regarding their endocytic performance. We describe the most common tools and protocols to visualize and quantify all of the individual steps in endocytic transit.

Download full-text PDF

Source
http://dx.doi.org/10.1385/1-59745-144-4:423DOI Listing

Publication Analysis

Top Keywords

endocytic pathway
8
quantitative microscopic
4
microscopic methods
4
methods studying
4
endocytic
4
studying endocytic
4
pathway endocytosis
4
endocytosis process
4
process essential
4
essential life
4

Similar Publications

The tumor suppressor fragile histidine triad (FHIT) is frequently lost in non-small cell lung cancer (NSCLC). We previously showed that a down-regulation of FHIT causes an up-regulation of the activity of HER2 associated to an epithelial-mesenchymal transition (EMT) and that lung tumor cells harboring a FHIT/pHER2 phenotype are sensitive to anti-HER2 drugs. Here, we sought to decipher the FHIT-regulated HER2 signaling pathway in NSCLC.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is the leading cause of dementia worldwide. The recent announcement that lecanemab, a monoclonal antibody targeting amyloid-b, can slow down cognitive decline in AD is a great step forward in the battle against the disease. However, the modest success achieved in the clinical trial speak to the need for developing additional pharmaceutical approaches to target other key features of AD.

View Article and Find Full Text PDF

Background: Genome-wide association studies suggest mutations in endolysosomal genes are linked to Alzheimer's disease (AD). Defective lysosomal function has been corroborated as a feature of AD by neuropathological and cell biology studies. PLD3 is a homolog of the phospholipase D family localized to lysosomes.

View Article and Find Full Text PDF

Background: Dysregulation of endolysosomal trafficking is a major pathogenic mechanism in Alzheimer's disease (AD). From the family of AD-linked endosomal pathway genes, SORL1 stands out as one of the highest risk factors. SORL1 encodes an endocytic sorting receptor that mediates endosomal trafficking and processing of key AD-associated molecules, including pathogenic forms of amyloid-β (e.

View Article and Find Full Text PDF

The mitochondrial pyruvate dehydrogenase complex (PDC) plays a crucial role in linking the glycolysis pathway and the tricarboxylic acid (TCA) cycle. Previously, we reported that a mutation of , encoding an E1β subunit of PDC, affects the abundance of auxin efflux carriers PIN-FORMED proteins (PINs) via reduced recycling and enhanced degradation in vacuoles. Here, we further analyzed the effects of TCA cycle inhibition on vesicle trafficking using both the mutant and 3-BP, a TCA cycle inhibitor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!