Intravenous sodium lactate infusions or the noradrenergic agent yohimbine reliably induce panic attacks in humans with panic disorder but not in healthy controls. However, the exact mechanism of lactate eliciting a panic attack is still unknown. In rats with chronic disruption of GABA-mediated inhibition in the dorsomedial hypothalamus (DMH), achieved by chronic microinfusion of the glutamic acid decarboxylase inhibitor L-allylglycine, sodium lactate infusions or yohimbine elicits panic-like responses (i.e., anxiety, tachycardia, hypertension, and tachypnea). In the present study, previous injections of the angiotensin-II (A-II) type 1 receptor antagonist losartan and the nonspecific A-II receptor antagonist saralasin into the DMH of "panic-prone" rats blocked the anxiety-like and physiological components of lactate-induced panic-like responses. In addition, direct injections of A-II into the DMH of these panic-prone rats also elicited panic-like responses that were blocked by pretreatment with saralasin. Microinjections of saralasin into the DMH did not block the panic-like responses elicited by intravenous infusions of the noradrenergic agent yohimbine or by direct injections of NMDA into the DMH. The presence of the A-II type 1 receptors in the region of the DMH was demonstrated using immunohistochemistry. Thus, these results implicate A-II pathways and the A-II receptors in the hypothalamus as putative substrates for sodium lactate-induced panic-like responses in vulnerable subjects.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6674511 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.2491-06.2006 | DOI Listing |
Acta Neuropsychiatr
October 2024
Laboratory of Neuroanatomy & Neuropsychobiology, Department of Pharmacology, School of Medicine of Ribeirão Preto of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil.
The dorsal midbrain comprises dorsal columns of the periaqueductal grey matter and corpora quadrigemina. These structures are rich in beta-endorphinergic and leu-enkephalinergic neurons and receive GABAergic inputs from substantia nigra pars reticulata. Although the inferior colliculus (IC) is mainly involved in the acoustic pathways, the electrical and chemical stimulation of central and pericentral nuclei of the IC elicits a vigorous defensive behaviour.
View Article and Find Full Text PDFEur Arch Psychiatry Clin Neurosci
September 2024
Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany.
Transient receptor potential canonical (TRPC) ion channels are expressed in areas of the brain responsible for processing emotion and mood and have been implicated in the pathophysiology of internalizing disorders such as major depressive disorder and anxiety disorders. This review outlines the rationale for targeting TRPC ion channels for drug development, with specific focus on TRPC4 and TRPC5. We provide preclinical evidence that the lack of TRPC4 and TRPC5 channels or its pharmacological inhibition attenuate fear and anxiety without impairing other behaviors in mice.
View Article and Find Full Text PDFEur J Neurosci
October 2024
Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
In humans, adverse physical and/or psychological traumas in childhood may predispose to developing psychiatric disorders in adulthood, including panic disorder. To model early life adversity in mice, we subjected male and female C57BL/6 J mice to a limited bedding and nesting (LBN) protocol between postnatal days 2-9 and investigated its effect on responsiveness to panicogenic challenges in adulthood. Panic-like escape behaviour was assessed during exposure to a high concentration of CO (20%) or in the beetle mania task (BMT), used to model respiratory and non-respiratory-related types of panic respectively.
View Article and Find Full Text PDFBrain Res
December 2024
Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil; Institute of Neuroscience and Behaviour (INeC) Ophidiarium, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14040-901, Brazil. Electronic address:
Rationale: The prelimbic division (PrL) of the medial prefrontal cortex (mPFC) is a key structure in panic.
Objectives: To evaluate the role of nitric oxide (NO) in defensive behaviour and antinociception.
Methods: Either Nω-propyl-L-arginine (NPLA) or Carboxy-PTIO was microinjected in the PrL cortex, followed by hypothalamic treatment with bicuculline.
Transl Psychiatry
July 2024
School of Psychology, Swinburne University, Melbourne, VIC, Australia.
This systematic review addresses the complex nature of Panic Disorder (PD), characterized by recurrent episodes of acute fear, with a focus on updating and consolidating knowledge regarding neurochemical, genetic, and epigenetic factors associated with PD. Utilizing the PRISMA methodology, 33 original peer-reviewed studies were identified, comprising 6 studies related to human neurochemicals, 10 related to human genetic or epigenetic alterations, and 17 animal studies. The review reveals patterns of altered expression in various biological systems, including neurotransmission, the Hypothalamic-Pituitary-Adrenal (HPA) axis, neuroplasticity, and genetic and epigenetic factors leading to neuroanatomical modifications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!