Plant developmental processes are controlled by co-ordinated action of phytohormones and plant genes encoding components of developmental response pathways. ENOD40 was identified as a candidate for such a plant factor with a regulatory role during nodulation. Although its mode of action is poorly understood, several lines of evidence suggest interaction with phytohormone response pathways. This hypothesis was investigated by analysing cytokinin-, auxin-, and ethylene-induced responses on cell growth and cell division in transgenic 35S:NtENOD40 Bright Yellow-2 (BY-2) tobacco cell suspensions. It was found that cell division frequency is controlled by the balance between cytokinin and auxin in wild-type cells and that this regulation is not affected in 35S:NtENOD40 lines. Elongation growth, on the other hand, is reduced upon overexpression of NtENOD40. Analysis of ethylene homeostasis shows that ethylene accumulation is accelerated in 35S:NtENOD40 lines. ENOD40 action can be counteracted by an ethylene perception blocker, indicating that ethylene is a negative regulator of elongation growth in 35S:NtENOD40 cells, and that the NtENOD40-induced response is mediated by alteration of ethylene biosynthesis kinetics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jxb/erl089 | DOI Listing |
PLoS One
January 2025
Polish Academy of Sciences, Institute of Plant Genetics, Poznan, Poland.
The increasing cultivation of perennial C4 grass known as Miscanthus spp. for biomass production holds promise as a sustainable source of renewable energy. Unlike the sterile triploid hybrid of M.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia.
Salinity stress disrupts water uptake and nutrient absorption, causing reduced photosynthesis, stunted growth, and decreased crop yields in plants. The use of indole acetic acid (IAA), arginine (AN), and mango fruit waste biochar (MFWB) can be effective methods to overcome this problem. Indole acetic acid (IAA) is a natural auxin hormone that aids cell elongation and division, thereby increasing plant height and branching.
View Article and Find Full Text PDFNat Commun
January 2025
Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France.
Pyruvate metabolism defects lead to severe neuropathies such as the Leigh syndrome (LS) but the molecular mechanisms underlying neuronal cell death remain poorly understood. Here, we unravel a connection between pyruvate metabolism and the regulation of the epitranscriptome that plays an essential role during brain development. Using genetically engineered mouse model and primary neuronal cells, we identify the transcription factor E4F1 as a key coordinator of AcetylCoenzyme A (AcCoA) production by the pyruvate dehydrogenase complex (PDC) and its utilization as an essential co-factor by the Elongator complex to acetylate tRNAs at the wobble position uridine 34 (U).
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Centro de Biologia Molecular Severo Ochoa (CBM), CSIC-UAM, Madrid, Spain.
Hox genes specify identities mainly in the anteroposterior axis in various animal tissues, some of them forming part of the internal organs and systems. The expression and activity of these genes have been analyzed mainly in Drosophila melanogaster, the fruit fly, and in mouse; in the former, the functional study of Hox genes has been detailed predominantly in epidermal structures, but their role in internal organs poses some challenges, particularly in pupae. One of these genes, Abdominal-B, dictates the development of many internal organs in the posterior abdomen of the fly, yet techniques for its analysis, like in vivo time-lapse, have long been impractical.
View Article and Find Full Text PDFInsect Sci
January 2025
College of Plant Protection, Yangzhou University, Yangzhou, China.
As the catalytic subunit of the Elongator complex, Elongator protein 3 (Elp3) plays a crucial role in multiple physiological processes, including growth, development and immune responses. Previous studies on Elp3 have focused on Caenorhabditis elegans, Drosophila melanogaster, Homo sapiens (human) or Mus musculus (mouse), whereas there are few reports on Elp3 in agricultural pests. Here, the role of TcElp3 in reproduction in the red flour beetle, Tribolium castaneum, was investigated, and the underlying mechanisms were explored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!