Beta2 adrenergic antagonist inhibits cerebral cortical oxygen delivery after severe haemodilution in rats.

Br J Anaesth

Department of Anaesthesia and the Cara Phelan Centre for Trauma Research, University of Toronto, St Michael's Hospital 30 Bond Street, Toronto, Ontario M5B 1W8, Canada.

Published: November 2006

Background: Haemodilution has been associated with neurological morbidity in surgical patients. This study tests the hypothesis that inhibition of cerebral vasodilatation by systemic beta2 adrenergic blockade would impair cerebral oxygen delivery leading to tissue hypoxia in severely haemodiluted rats.

Methods: Under general anaesthesia, cerebral tissue probes were placed to measure temperature, regional cerebral blood flow (rCBF) and tissue oxygen tension (P(Br)O2) in the parietal cerebral cortex or hippocampus. Baseline measurements were established before and after systemic administration of either a beta2 antagonist (10 mg kg(-1) i.v., ICI 118, 551) or saline vehicle. Acute haemodilution was then performed by simultaneously exchanging 50% of the estimated blood volume (30 ml kg(-1)) with pentastarch. Arterial blood gases (ABGs), haemoglobin concentration (co-oximetry), mean arterial blood pressure (MAP) and heart rate (HR) were also measured. Data were analysed using a two-way anova and post hoc Tukey's test [mean (sd)].

Results: Haemodilution reduced the haemoglobin concentration comparably in all groups [71 (9) g litre(-1)]. There were no differences in ABGs, co-oximetry, HR and MAP measurements between control and beta2 blocked rats, either before or 60 min after drug or vehicle administration. In rats treated with the beta2 antagonist there was a significant reduction in parietal cerebral cortical temperature, regional blood flow and tissue oxygen tension, relative to control rats, 60 min after haemodilution (P<0.05 for each). These differences were not observed when probes were placed in the hippocampus.

Conclusion: Systemic beta2 adrenergic blockade inhibited the compensatory increase in parietal cerebral cortical oxygen delivery after haemodilution thereby reducing cerebral cortical tissue oxygen tension.

Download full-text PDF

Source
http://dx.doi.org/10.1093/bja/ael238DOI Listing

Publication Analysis

Top Keywords

beta2 adrenergic
8
cerebral cortical
8
oxygen delivery
8
temperature regional
8
blood flow
8
tissue oxygen
8
oxygen tension
8
parietal cerebral
8
beta2 antagonist
8
arterial blood
8

Similar Publications

Article Synopsis
  • The study investigates the effectiveness of immunoadsorption (IA) treatment on post-COVID myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) patients, focusing on those with elevated β2 adrenergic autoantibodies.
  • Patients underwent five IA sessions and showed significant improvement in physical functioning, fatigue, and other symptoms over six months, with 70% responding positively to the treatment.
  • The findings suggest that IA could be a beneficial therapy for alleviating symptoms in post-COVID ME/CFS patients, indicating a possible link between autoimmunity and the condition.
View Article and Find Full Text PDF

The first combination inhaled corticosteroid and short-acting beta₂ agonist (ICS-SABA) was approved by the Food and Drug Administration (FDA) in 2023 for as-needed treatment or prevention of bronchoconstriction and to reduce the risk of asthma exacerbations in patients 18 years of age and older. The recently approved product contains an ICS-albuterol combination. The 2024 Global Initiative for Asthma (GINA) guidelines recommend as-needed ICS-formoterol as the preferred asthma reliever therapy; however, a GINA alternative recommendation is the use of ICS whenever an as-needed (SABA) is used.

View Article and Find Full Text PDF

A 33-year-old Japanese man with a history of atopic dermatitis and asthma had never been diagnosed with any apparent glucose intolerance but had been aware of palpitations for >10 years. A 75g oral glucose tolerance test (OGTT) at his physical examination in March 2021 revealed fasting hyperglycemia and post-load hypoglycemia. An OGTT recheck was performed in May 2021 and was normal.

View Article and Find Full Text PDF

Deciphering the involvement of norepinephrine and β-adrenergic receptor subtypes in glucose induced insulin secretion: an integrated and exploration using isolated pancreatic islets of C57BL/6J mice.

J Recept Signal Transduct Res

December 2024

Father George Albuquerque Pai Cell and Molecular Biology Laboratory, Department of Biotechnology, School of Life Sciences, St Aloysius (Deemed to be University), Mangaluru, Karnataka, India.

Regulating insulin production by pancreatic beta cells is crucial for maintaining metabolic balance. Previous studies observed elevated neurotransmitter levels, like norepinephrine (NE), in metabolic syndrome mice with impaired insulin secretion. Given the therapeutic potential of β-adrenergic receptors (β-ARs) for diabetes and obesity, and the lack of structural data on murine β-ARs, we aimed to construct and validate 3D models to investigate their roles in insulin secretion regulation.

View Article and Find Full Text PDF

Background: Obstructive sleep apnea syndrome (OSAS) is a chronic syndrome, affecting about 1%-5% of children. OSAS is characterized by increased resistance and collapse of the upper airways, with different degrees of severity requiring interventions ranging from lifestyle modifications to surgery. Sympathetic activity is increased in OSAS, and the reduction of disease symptoms, occurring after adenotonsillectomy, correlates with biomarkers indicating a reduced sympathetic response.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!