Male rat chemosignals attract females and influence their reproductive status. Through the accessory olfactory bulb and its projection target, the posteromedial cortical nucleus of the amygdala (PMCo), species-specific chemosignals detected by the vomeronasal organ (VNO) may reach the hypothalamus. To test this hypothesis in vivo, behavioural activation and neurotransmitter release in the PMCo were simultaneously monitored in freely moving female oestrus rats exposed to either rat or mouse urinary stimuli, or to odorants. Plasma levels of the luteinizing hormone were subsequently monitored. All stimuli induced an immediate behavioural activation, but only species-specific chemosignals led to a delayed behavioural activation. This biphasic behavioural activation was accompanied by a VNO-mediated release of the excitatory amino acids, aspartate and glutamate, in the PMCo. The late behavioural and neurochemical activation was followed by an increase in the levels of circulating luteinizing hormone. In conclusion, these data show that only species-specific chemosignals induce a delayed behavioural activation and excitatory activation of the PMCo, which is dependent on an intact VNO.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1471-4159.2006.04127.x | DOI Listing |
Hum Brain Mapp
January 2025
Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, Magdeburg, Germany.
The present study investigated the neuromodulatory substrates of salience processing and its impact on memory encoding and behaviour, with a specific focus on two distinct types of salience: reward and contextual unexpectedness. 46 Participants performed a novel task paradigm modulating these two aspects independently and allowing for investigating their distinct and interactive effects on memory encoding while undergoing high-resolution fMRI. By using advanced image processing techniques tailored to examine midbrain and brainstem nuclei with high precision, our study additionally aimed to elucidate differential activation patterns in subcortical nuclei in response to reward-associated and contextually unexpected stimuli, including distinct pathways involving in particular dopaminergic modulation.
View Article and Find Full Text PDFNanoscale
January 2025
Transport at Nanoscale Interfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland.
Magic-angle twisted bilayer graphene (TBLG) has emerged as a versatile platform to explore correlated electron phases driven primarily by low-energy flat bands in moiré superlattices. While techniques for controlling the twist angle between graphene layers have spurred rapid experimental progress, understanding the effects of doping inhomogeneity on electronic transport in correlated electron systems remains challenging. In this work, we investigate the interplay of confinement and doping inhomogeneity on the electrical transport properties of TBLG by leveraging device dimensions and twist angles.
View Article and Find Full Text PDFHum Brain Mapp
January 2025
FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland.
The brain develops most rapidly during pregnancy and early neonatal months. While prior electrophysiological studies have shown that aperiodic brain activity undergoes changes across infancy to adulthood, the role of gestational duration in aperiodic and periodic activity remains unknown. In this study, we aimed to bridge this gap by examining the associations between gestational duration and aperiodic and periodic activity in the EEG power spectrum in both neonates and toddlers.
View Article and Find Full Text PDFHum Mol Genet
January 2025
Department of Reproductive Medicine, The First Affiliated Hospital of Henan University of CM, No. 19, Renmin Road, Jinshui District, Zhengzhou City, Henan Province, China.
This study systematically explores the oncogenic role of the long non-coding RNA (lncRNA) LINC00115 in endometrial cancer (EC) and reveals its unique mechanism in promoting proliferation, invasion, and metastasis via the JAK/STAT signaling pathway. LINC00115 is significantly upregulated in EC tissues and closely associated with advanced TNM staging and lymph node metastasis. Functional assays showed that knockdown of LINC00115 suppressed EC cell proliferation, invasion, and metastasis, while overexpression enhanced these malignant behaviors.
View Article and Find Full Text PDFCNS Neurosci Ther
January 2025
Department of Neurology, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China.
Objective: This study aims to investigate how the E3 ubiquitin ligase LITAF influences mitochondrial autophagy by modulating MCL-1 ubiquitination, and its role in the development of epilepsy.
Methods: Employing single-cell RNA sequencing (scRNA-seq) to analyze brain tissue from epilepsy patients, along with high-throughput transcriptomics, we identified changes in gene expression. This was complemented by in vivo and in vitro experiments, including protein-protein interaction (PPI) network analysis, western blotting, and behavioral assessments in mouse models.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!