Generalized two-dimensional (2D) correlation spectroscopy was used to characterize the structural evolution of silk fibroin as the pH changed from 6.8 to 4.8, demonstrating that the conformational transitions of silk fibroin are induced step by step as the pH decreases. 2D homo- and hetero-spectral correlation spectroscopy was used to establish the relationship between information extracted from NMR and Raman spectroscopy. This novel method reveals the structural evolution using two probes with different frequency scales (10(5-9) Hz for nuclear spin motion and 10(12-14) Hz for molecular vibration motion), reflecting the different spatial scale sensitivity to the molecular conformational change. The transition order is identified as silk I state (helix dominant) --> silk I intermediate state --> silk II intermediate state --> silk II state (beta-sheet dominant), as the pH decreases. The results may rationalize the silkworm spinning process, which undergoes the conformational transition steadily from the soluble helix state to the insoluble beta-sheet state as the pH decreases from the posterior to anterior glands.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp062461y | DOI Listing |
Environ Sci Pollut Res Int
January 2025
Earth Sciences, Engineering Faculty, Autonomous University of San Luis Potosi, Av. Manuel Nava 8, San Luis Potosí, SLP, Mexico.
Ecosystems such as wetlands have karst groundwater as their primary source of preserving their services and functions. Karst systems are complex hydrogeological systems that are difficult to study because of their complicated functioning mechanism, which requires an interdisciplinary effort based on hydrodynamic assessment and characterization of the hydrogeology of the system. The study area is the Ramsar wetland Ciénaga de Tamasopo (Mexico), which is dependent on the discharge of karst groundwater that is affected by water extraction of extensive sugarcane agriculture and is also the main water source for the rural towns.
View Article and Find Full Text PDFGut Microbes
December 2025
Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX, USA.
The probiotic impact of microbes on host metabolism and health depends on both host genetics and bacterial genomic variation. is the predominant human gut commensal emerging as a next-generation probiotic. Although this bacterium exhibits substantial intraspecies diversity, it is unclear whether genetically distinct strains might lead to functional differences in the gut microbiome.
View Article and Find Full Text PDFEvolution
January 2025
Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
To better understand the sources of biological diversity in nature, we need information on the mechanisms underlying population divergence. Biological systems with patterns of naturally occurring adaptive variation among populations can provide insight into the genetic architecture of diverging traits and the influence of genetic constraints on responses to selection. Using a system of reproductive character displacement in the North American mushroom-feeding fly Drosophila subquinaria, we assessed patterns of genetic (co)variance among a suite of chemical signaling traits and divergence in this pattern among populations.
View Article and Find Full Text PDFLangmuir
January 2025
ESYCOM, CNRS-UMR 9007, Université Gustave Eiffel, F-77454 Marne-la-Vallée, France.
This study investigates the synthesis, characterization, and functional properties of well-aligned zinc oxide (ZnO) nanowires (NWs) obtained by a two-step hydrothermal method. ZnO NWs were grown on silicon substrates precoated with a ZnO seed layer. The growth process was conducted at 90 °C for different durations (2, 3, and 4 h) to examine the time-dependent evolution of the nanowire properties.
View Article and Find Full Text PDFJ Contin Educ Health Prof
January 2025
Ms. Cormack: Adjunct Senior Lecturer, Medical Imaging and Radiation Sciences Department, Faculty of Medicine, Nursing and Health Sciences, Monash University, and PhD Candidate, Education Portfolio, Faculty of Medicine, Nursing and Health Sciences, Monash University, Australia.
Introduction: Point-of-care ultrasound (POCUS) technology has evolved rapidly and is being embraced by many health professionals as a valuable clinical tool. Sonographers are now teaching ultrasound skills to other health professionals in the clinical setting, including doctors, nurses, midwives, paramedics, and physiotherapists. The purpose of this study was to understand the breadth of the opportunities, transitions, and challenges experienced by sonographer educators navigating new interprofessional teaching roles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!