Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We present a theoretical study on the proton dissociation properties of the membranes for polymer electrolyte fuel cells. A density functional theory method is used to study the influence of fluorocarbon and hydrocarbon backbones on proton dissociation, the interaction of water molecules with the sulfonic acid group, and the energy barriers for proton dissociation. Better proton dissociation properties of CH(3)SO(3)H compared to CF(3)SO(3)H are observed from statistical analyses of the optimized structures for both systems. However, the calculated energy barriers for proton dissociation are lower for CF(3)SO(3)H than for the CH(3)SO(3)H system. At the same time, the interaction of water molecules is stronger for CH(3)SO(3)H than for CF(3)SO(3)H. Also, the analysis of the hydrogen-bonding network in both systems shows that the number of hydrogen bonds formed around the sulfonic acid group in CH(3)SO(3)H is larger than that in CF(3)SO(3)H. Therefore, the decrease of the energy barrier with increasing number of coordinating water molecules, pronounced in the case of CH(3)SO(3)H, may lower the barrier, which enhances good proton conductivity of a hydrocarbon-based polymer in low humidity conditions. Thus the hydration ability of a sulfonic acid group is an important factor for realizing better proton dissociation in low humidity conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp060281i | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!