A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

DFT description on electronic structure and optical absorption properties of anionic S-doped anatase TiO2. | LitMetric

DFT description on electronic structure and optical absorption properties of anionic S-doped anatase TiO2.

J Phys Chem B

Institute of Theoretical Chemistry, Shandong University, Jinan, 250100, China.

Published: September 2006

Plane-wave-based pseudopotential density functional theory (DFT) calculations are used to characterize the doping effect of S substituting for O in anatase TiO(2). Through band structure calculation, a direct band gap is predicted in TiO(2)(-)(x)S(x). Electronic structure analysis shows that the doping S could substantially lower the band gap of TiO(2) by the presence of an impurity state of S 3p on the upper edge of the valence band. Excitations from the impurity state of S 3p to the conduction band may be responsible for the red shift of the absorption edge observed in the S-doped TiO(2). The band gap lowering and red shift of the absorption edge are found to increase as the sulfur concentration increases.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp0635462DOI Listing

Publication Analysis

Top Keywords

band gap
12
electronic structure
8
anatase tio2
8
tio2 band
8
impurity state
8
red shift
8
shift absorption
8
absorption edge
8
band
6
dft description
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!