The electropolymerization behaviors of an electroactive and luminescent compound TCPC as precursor are studied. The resultant electrochemical deposition (ED) films are characterized by cyclic voltammetry (CV), UV-vis, fluorescence spectra, scanning electron microscopy (SEM), and atomic force microscopy (AFM). Under the CV mode with potential range of -0.5 to 0.85 V vs Ag/Ag(+), the coupling reactions between the carbazole units of TCPC are very efficient, while the fluorescent trifluorene segment in TCPC is chemically inert in this potential range, which results in a highly fluorescent film formation on indium tin oxide (ITO) electrode. The deposition parameters for preparing the TCPC-based ED films are optimized, and the best ED film gives the fluorescence efficiency of 45.5% with surface roughness of 2.8 nm and morphologic stability as heating to 180 degrees C. The light-emitting devices (LEDs) using this ED film as light emitting layer with structure ITO/ED film (approximately 100 nm)/Ba/Al achieve maximum luminescence and external quantum efficiency of 4224 cd/m(2) at 17 V and 0.72% at 11.5 V, respectively, which are better than the device using TCPC spin-coating films as emitting layer. The technique provides a facile route toward a patternable luminescent film and device because such luminescent ED films can be manipulatively deposited on the electrified electrode.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp0631230 | DOI Listing |
RSC Adv
January 2025
Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo 05508-000 São Paulo SP Brazil
New tetrakis Eu and Gd β-diketonate complexes containing benzimidazolium (Bzim) as the counterion were synthesized by the one-pot method. The Bzim[Eu(tta)]·HO complex was further incorporated into a poly(methyl methacrylate) matrix (PMMA) at 1, 5, and 10% (w/w), which revealed highly desirable photonic features. The Eu and Gd complexes were characterized by elemental and thermal analyses, in addition to ESI-MS spectrometry, FTIR, and Raman spectroscopy.
View Article and Find Full Text PDFArtificial heterostructures are often realized by stacking different materials to present new emerging properties that are not exhibited by their individual constituents. In this work, non-layered two-dimensional α-MnSe nanosheets were transferred onto LaMnO (LMO) films to obtain a multifunctional heterostructure. The high crystal quality of the MnSe/LMO heterostructure was revealed by X-ray diffraction, Raman spectroscopy, and scanning electron microscopy measurements.
View Article and Find Full Text PDFNat Commun
January 2025
Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
Perovskite-organic tandem solar cells (P-O-TSCs) hold substantial potential to surpass the theoretical efficiency limits of single-junction solar cells. However, their performance is hampered by non-ideal interconnection layers (ICLs). Especially in n-i-p configurations, the incorporation of metal nanoparticles negatively introduces serious parasitic absorption, which alleviates photon utilization in organic rear cell and decisively constrains the maximum photocurrent matching with front cell.
View Article and Find Full Text PDFChem Asian J
January 2025
Universidad de Chile, Departamento de Quimica, Santiago, CHILE.
This study investigates the critical role of polymer matrices in optimizing luminescence and energy transfer, utilizing the commercial dyes Coumarin 6 (C6) and Rhodamine B (RhB) as a donor-acceptor pair. Solution-phase experiments revealed a dependence of energy transfer efficiency on solvent dielectric constant. Furthermore, embedding the dyes within Poly(methyl methacrylate) (PMMA) or Poly(vinyl butyral) (PVB) matrices significantly enhance energy transfer due to increased molecular proximity.
View Article and Find Full Text PDFAdv Mater
December 2024
Division of Materials Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.
The development of efficient color conversion layers for μ-LED technology faces significant challenges owing to the limitations of materials that require binders. Binders are typically used to ensure uniform film formation in color-conversion layers, but they often cause optical losses, increase layer thickness, and introduce long-term stability issues. To address the limitations of materials requiring binders, cyclopropyltriphenylphosphonium manganese tetrabromide (CPTPMnBr) is synthesized, a novel lead-free metal halide.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!