Precipitation of nanostructured copper oxalate: substructure and growth mechanism.

J Phys Chem B

Powder Technology Laboratory, Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.

Published: September 2006

AI Article Synopsis

  • The study explores how materials' properties can be controlled at the nanometer scale by understanding the growth mechanism of copper oxalate through precipitation.
  • Researchers used both in-situ and ex-situ techniques, including electron microscopy and X-ray diffraction, to analyze particle growth from 2 minutes to 2 weeks.
  • Findings suggest a core-shell growth model during the early stages, leading to more stable, lens-shaped particles as the process continues, and propose a more detailed mechanism similar to other nanostructured materials.

Article Abstract

The possibility of controlling materials properties by tailoring their substructure at the nanometer scale is a current topic of great interest. To do so, a fundamental understanding of the growth mechanism is of key importance and an analytical challenge as nanostructured materials are often produced by precipitation methods at high supersaturations where formation kinetics are fast. The current study focuses on the precipitation of copper oxalate, which has been previously shown to produce self-assembled ordered nanostructured particles with the promise of being able to tailor this nanometer substructure. In the current study we investigate in detail the growth mechanism and kinetics of precipitation by using in-situ particle size measurement or by stopping the reaction at various stages and using ex-situ methods. Combining the ex-situ methods of high-resolution scanning electron microscopy, transmission electron microscopy, and X-ray powder diffraction along with the in-situ methods, we were able to follow the growth process from 2 min to 2 weeks. The results in the 2-30 min period lead to the proposal of a core-shell growth model with a poorly ordered core and a well-structured shell of nanosized crystallites (50-70 nm), adding support to the brick-by-brick model previously proposed for this phase of particle growth. Particle evolution over long periods up to 2 weeks show a ripening which produces lens-shaped particles that eliminate the "high" surface energy faces observed in the earlier stages of growth. A more complete growth mechanism for copper oxalate precipitation at moderate supersaturations is proposed similar to recent findings for other self-assembled nanostructured particles.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp0606816DOI Listing

Publication Analysis

Top Keywords

growth mechanism
16
copper oxalate
12
growth
8
current study
8
nanostructured particles
8
ex-situ methods
8
electron microscopy
8
precipitation
5
precipitation nanostructured
4
nanostructured copper
4

Similar Publications

The PI4K2A gene positively regulates lipid synthesis in bovine mammary epithelial cells and attenuates the inhibitory effect of t10,c12-CLA on lipid synthesis.

Sci Rep

January 2025

College of Animal Science and Technology, Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, Ningxia University, Yinchuan, 750021, China.

Currently, the identification of valuable candidate genes affecting milk fat synthesis in dairy cows is still limited, and the specific regulatory mechanism is still unknown. In this study, we used primary bovine mammary epithelial cells(BMECs)as a model and utilized overexpression and knockdown techniques for the PI4K2A gene to investigate the specific mechanisms by which it regulates lipid metabolism in BMECs. We studied whether PI4K2A regulates the inhibition of trans-10, cis-12 conjugated linoleic acid (t10,c12-CLA) on lipid synthesis in BMECs.

View Article and Find Full Text PDF

The contamination of Chinese medicinal materials with cadmium (Cd) is a pressing global issue that poses significant risks to human health. The beneficial effects of selenium (Se) have been established in improving plant growth and reducing Cd accumulation in plant under Cd stress. This study employed soil cultivation experiments to investigate the remediation effects of exogenous Se (0, 0.

View Article and Find Full Text PDF

Renal fibrosis is widely recognized as the ultimate outcome of many chronic kidney diseases. The process of epithelial-mesenchymal transition (EMT) plays a critical role in the progression of fibrosis following renal injury. UHRF1, as a critical epigenetic regulator, may play an essential role in the pathogenesis and progression of renal fibrosis and EMT.

View Article and Find Full Text PDF

A retrospective analysis on maternal and neonatal outcomes in pSS/AITD pregnancies.

Sci Rep

January 2025

Department of Obstetrics, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China.

The combined impact of concurrent primary Sjögren's syndrome (pSS) and autoimmune thyroid disease (AITD) on pregnancy outcomes remains underreported. A retrospective analysis was conducted on 115 pregnant patients diagnosed with pSS and delivering at the Third Affiliated Hospital of Guangzhou Medical University from January 2009 to July 2023. The effects of AITD on maternal and neonatal outcomes were examined and compared to a control group without AITD.

View Article and Find Full Text PDF

Absent in melanoma 2: a potent suppressor of retinal pigment epithelial-mesenchymal transition and experimental proliferative vitreoretinopathy.

Cell Death Dis

January 2025

Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.

Epithelial-to-mesenchymal transition (EMT) is a critical and complex process involved in normal embryonic development, tissue regeneration, and tumor progression. It also contributes to retinal diseases, such as age-related macular degeneration (AMD) and proliferative vitreoretinopathy (PVR). Although absent in melanoma 2 (AIM2) has been linked to inflammatory disorders, autoimmune diseases, and cancers, its role in the EMT of the retinal pigment epithelium (RPE-EMT) and retinal diseases remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!