Virus-induced activation of the beta interferon (IFN-beta) gene requires orderly recruitment of chromatin-remodeling complexes and time-regulated acetylation of histone residues K8H4 and K14H3 on the promoter region. We have previously shown that transcription factor Yin Yang 1 (YY1) binds the murine IFN-beta promoter at two sites (-122 and -90) regulating promoter transcriptional capacity with a dual activator/repressor role. In this work we demonstrate that both YY1 -122 and -90 sites are required for CBP recruitment and K8H4/K14H3 acetylation to take place on the IFN-beta promoter region after virus infection. A single point mutation introduced at either one of these two sites inhibiting YY1 binding completely disrupted CBP recruitment and K8H4/K14H3 acetylation independently of HMGI or IRF3 binding to the promoter. We have previously demonstrated that YY1 represses the transcriptional capacity of the IFN-beta promoter through its -90 site via histone deacetylation. Here we demonstrate that, in vivo, the binding of YY1 to the -90 site is constant all through virus infection whereas the binding of YY1 to the -122 site is activated after infection. We discuss here the capacity of YY1 to either repress (through histone deacetylase recruitment) or activate (through CBP recruitment) IFN-beta gene expression according to the occupancy of either only its -90 site or both its -122 and -90 sites.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1636788 | PMC |
http://dx.doi.org/10.1128/MCB.00420-06 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!