Context: Pseudohypoaldosteronism type 1 (PHA1) is a rare salt-wasting syndrome. Mutations in the NR3C2 gene coding for the mineralocorticoid receptor (MR) cause autosomal dominant PHA1.
Objective: Our objective was to reveal the cause of renal salt loss in six PHA1 patients and analyze the mutants' functional impact on MR function.
Design: Our study included the following: clinical and hormonal characterization of the patients' phenotype, analysis of the NR3C2 gene, determination of receptor affinities to aldosterone and the transcriptional activation abilities of the MR mutants, investigation of subcellular translocation using fluorescence-labeled MR, and studying changes in mutant receptor conformation with proteolysis experiments and three-dimensional modeling.
Results: Six heterozygous NR3C2 mutations were detected. One frameshift mutation (c.1131dupT) has been reported previously. The second frameshift mutation (c.2871dupC), which has only recently been reported by our group, showed no aldosterone binding and no transactivation because of a major change in receptor conformation. Two novel nonsense mutations generate a truncated receptor protein. Two missense mutations differently affect MR function. S818L was reported recently without complete in vitro data. S818L does not bind aldosterone or activate transcription or translocate into the nucleus. A major displacement of several residues involved in aldosterone binding was PHA1 causing. The novel E972G mutation showed a significantly lower ligand-binding affinity and only 9% of wild-type transcriptional activity caused by major changes in receptor conformation.
Conclusions: Our data on six mutations extend the spectrum of PHA1-causing NR3C2 gene mutations. Studying naturally occurring mutants helps to clarify their pathogenicity and to identify crucial residues for MR structure and function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1210/jc.2006-1161 | DOI Listing |
Sudan J Paediatr
January 2024
Department of Paediatrics, South West Acute Hospital, Enniskillen, UK.
Pseudohypoaldosteronism (PHA) is a rare disorder that mimics congenital adrenal hyperplasia (CAH). Renal type A1A of the disorder has a known gene mutation (NR3C2) and parents may be asymptomatic despite biochemical abnormalities. Meticulous interpretation of hormonal and biochemical data, and early liaison with endocrinology and renal teams are key in diagnosis.
View Article and Find Full Text PDFPharmaceuticals (Basel)
December 2024
School of Medicine, Shanghai University, Shanghai 200444, China.
Background/objectives: Breast cancer is the second most common malignancy worldwide and poses a significant threat to women's health. However, the prognostic biomarkers and therapeutic targets of breast cancer are unclear. A prognostic model can help in identifying biomarkers and targets for breast cancer.
View Article and Find Full Text PDFMol Biol Rep
December 2024
National Engineering Research Center of Marine Facilities Aquaculture, College of Fisheries, Zhejiang Ocean University, No. 1 Haida South Road, Dinghai District, Zhoushan, 316022, Zhejiang Province, China.
Background: Larimichthys crocea is an important aquaculture species along the southeastern coast of China, with diverse environment and farming practices since artificial breeding, these different aquatic habitats are subject to significant variations in environmental factors that may involve modulation of gene expression through epigenetic mechanisms to enable species to survive and reproduce.
Methods And Results: This study aimed to identify methylation variation sites (SMVs) in different sequence contexts (CG, CHG, and CHH) within populations of L. crocea in different habitats.
Endocrine
November 2024
Department of Endocrinology, Karolinska University Hospital, Stockholm, Sweden.
Biol Sex Differ
September 2024
Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA- Plataforma BIONAND), Málaga, 29590, Spain.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!