Vascular smooth muscle cell (VSMC) proliferation occurs in vascular obstructive events such as atherosclerosis and restenosis. We previously showed that Notch receptors are induced in smooth muscle cells during vascular remodeling. Our goal was to determine the mechanisms employed by Notch signaling to regulate proliferation. Activation of Notch1 and Notch4 induced the VSMC-selective target genes HRT1 and HRT2, promoted cell cycle transit in smooth muscle cells, and led to loss of density-dependent growth inhibition. This was associated with a reduction in levels of the cyclin-dependent kinase inhibitor (cdk) p27(kip1). Over-expression of p27(kip1) resulted in a dose-dependent rescue of the Notch-induced phenotype and exit from the cell cycle. In addition, HRT2 expression was sufficient to promote S-phase entry, and we demonstrate that HRT2 interacts directly with the p27(kip1) promoter to repress transcription. Transcriptional repression occurred within the approximately 774 bp minimal p27(kip1) promoter region and mutational analysis demonstrated that repression is largely dependent on a conserved class-C domain. Our data show that Notch signaling acts to promote a proliferative phenotype in VSMC by modulation of the G1/S-phase checkpoint. In addition, we define a novel mechanism by which the Notch effector, HRT2, interacts directly with the class-C domain of the p27(kip1) promoter, repressing its expression. These studies identify a novel transcriptional target of HRT2, and show that Notch effectors directly control cell cycle regulatory components. We suggest that this mechanism is relevant to hyperproliferative states in VSMC seen during vascular remodeling and repair.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1160/TH06-04-0224 | DOI Listing |
Nat Cardiovasc Res
January 2025
Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
Loss-of-function mutations in NOTCH1 were previously linked to thoracic aortopathy, a condition for which non-surgical treatment options are limited. Based on clinical proteome analysis, we hypothesized that mitochondrial fusion and biogenesis in aortic smooth muscle cells (SMCs) are crucial for regulating the progression of NOTCH1-related aortopathy. Here we demonstrate that SMC-specific Notch1 knockout mice develop aortic pathology, including stiffening, dilation and focal dissection.
View Article and Find Full Text PDFNephrol Dial Transplant
January 2025
Division of Nephrology and Section of Mineral Metabolism, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA.
Elevations in systemic phosphate levels, also called hyperphosphatemia, occur in chronic kidney disease (CKD) and during the normal aging process and are associated with various pathologies, such as cardiovascular injury. Experimental studies suggest that at high serum concentrations, phosphate can induce osteogenic differentiation of vascular smooth muscle cells and contribute to vascular calcification. However, the precise underlying mechanism leading to cardiovascular injury is not well understood.
View Article and Find Full Text PDFEur J Pharmacol
January 2025
College of Korean Medicine, Gachon University, Seongnam 13120, Korea. Electronic address:
Obesity due to excessive body fat accumulation remains a global problem. Patients with obesity have high cortisol levels, and its dysregulation is caused by increased 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) levels. The effects and mechanism of J2H-1702, an 11β-HSD1 inhibitor, on nonalcoholic steatohepatitis (NASH) were explored.
View Article and Find Full Text PDFJ Surg Res
January 2025
Department of Neonatology, Children's Hospital Affiliated to Shandong University, Jinan, ShanDong, China. Electronic address:
Introduction: Sildenafil, a selective phosphodiesterase 5 inhibitor, modulates vascular dysfunction, with hypoxia-induced pulmonary artery smooth muscle cells (PASMCs) proliferation, migration, and invasion closely implicated in vascular remodeling in persistent pulmonary hypertension of the newborn (PPHN). This study aimed to assess sildenafil's protective effects against PPHN and elucidate underlying molecular pathways.
Methods: Cell Counting Kit-8, wound healing, and Transwell assays evaluated rat PASMC proliferation, migration, and invasion under hypoxia.
ACS Biomater Sci Eng
January 2025
Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3E3, Canada.
Restenosis remains a long-standing limitation to effectively maintain functional blood flow after percutaneous transluminal angioplasty (PTA). While the use of drug-coated balloons (DCBs) containing antiproliferative drugs has improved patient outcomes, limited tissue transfer and poor therapeutic targeting capabilities contribute to off-target cytotoxicity, precluding adequate endothelial repair. In this work, a DCB system was designed and tested to achieve defined arterial delivery of an antirestenosis therapeutic candidate, cadherin-2 (N-cadherin) mimetic peptides (NCad), shown to selectively inhibit smooth muscle cell migration and limit intimal thickening in early animal PTA models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!