AI Article Synopsis

Article Abstract

Overexpressed or activated hepatocyte growth factor receptor, encoded by the MET proto-oncogene, was found in the majority of colorectal carcinomas (CRCs), whose stepwise progression to malignancy requires transcriptional activation of beta-catenin. We here demonstrate that a functional crosstalk between Met and beta-catenin signaling sustains and increases CRC cell invasive properties. Hepatocyte growth factor (HGF) stimulation prompts beta-catenin tyrosine phosphorylation and dissociation from Met, and upregulates beta-catenin expression via the phosphatidylinositol 3-kinase pathway in conditions that mimic those found by the invading and metastasizing cells. Additionally, a transcriptionally active form of beta-catenin, known to be oncogenic, enhances Met expression. Furthermore, HGF treatment increases the activity of the beta-catenin-regulated T-cell factor transcription factor in cells expressing the wild-type or the oncogenic beta-catenin. In the mirror experiments, either Met or beta-catenin knocking down also reduces their protein level. In biological assays, beta-catenin knocking down abrogates the HGF-induced motile phenotype, whereas active beta-catenin fosters ligand-independent cell scattering. Met and beta-catenin also cooperate in promoting entry into the cell cycle and in protecting cells from apoptosis. In conclusion, Met and beta-catenin pathways are mutually activated in CRC cells. This might generate a self-amplifying positive feedback loop resulting in the upregulation of the invasive growth properties of CRC cells.

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.onc.1209859DOI Listing

Publication Analysis

Top Keywords

met beta-catenin
16
hepatocyte growth
12
growth factor
12
beta-catenin
12
positive feedback
8
feedback loop
8
factor receptor
8
cell invasive
8
invasive growth
8
beta-catenin knocking
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!