A new scalable liposome production system is presented, which is based on the ethanol injection technique. The system permits liposome manufacture regardless of production scale, as scale is determined only by free disposable vessel volumes. Once the parameters are defined, an easy scale up can be performed by just changing the process vessels. These vessels are fully sterilizeable and all raw materials are transferred into the sanitized and sterilized system via 0.2 microm filters to guarantee an aseptic production. Liposome size can be controlled by the local lipid concentration at the injection point depending on process parameters like injection pressure, lipid concentration and injection rate. These defined process parameters are furthermore responsible for highly reproducible results with respect to vesicle diameters and encapsulation rates Compared to other technologies like the film method which is normally followed by size reduction through high pressure homogenization, ultrasonication or extrusion, no mechanical forces are needed to generate homogeneous and narrow distributed liposomes. Another important advantage of this method is the suitability for the entrapment of many different drug substances such as large hydrophilic proteins by passive encapsulation, small amphiphilic drugs by a one step remote loading technique or membrane association of antigens for vaccination approaches.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/08982100600851086 | DOI Listing |
Front Biosci (Landmark Ed)
January 2025
Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, 02-776 Warsaw, Poland.
Background: This study investigated the selenium-binding capacity of the biomass of two yeast strains, American Type Culture Collection (ATCC) 7090 and CCY 20-2-26.
Methods: The studies carried out methods of bioaccumulation by yeast biomass. Inorganic selenium was added to the culture media as an aqueous solution of NaSeO at concentrations ranging from 0 to 40 mg Se/L.
Exp Physiol
January 2025
Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK.
In health, the liver is a metabolically flexible organ that plays a key role in regulating systemic lipid and glucose concentrations. There is a constant flux of fatty acids (FAs) to the liver from multiple sources, including adipose tissue, dietary, endogenously synthesized from non-lipid precursors, intrahepatic lipid droplets and recycling of triglyceride-rich remnants. Within the liver, FAs are used for triglyceride synthesis, which can be oxidized, stored or secreted in very low-density lipoproteins into the systemic circulation.
View Article and Find Full Text PDFPharmaceutics
January 2025
Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
Acute liver injury (ALI) is a prevalent and potentially lethal condition globally, where pharmacotherapy plays a vital role. However, challenges such as rapid drug excretion and insufficient concentration at hepatic lesions often impede the treatment's effectiveness. We successfully prepared glycyrrhizinate monoammonium cysteine (GMC)-loaded lipid nanoparticles (LNPs) using high-pressure homogenization.
View Article and Find Full Text PDFPharmaceutics
December 2024
Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia.
: The tocotrienol-rich fraction (TRF) is a lipid-soluble vitamin that has good antioxidant and anti-inflammatory properties. The TRF is widely studied as a potential treatment for various diseases, including bone diseases. However, its application is limited due to its poor oral bioavailability profile, warranting an innovative approach to overcome its pharmacokinetic limitations.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand.
This study investigates the potential synergistic effects of extracts from (turmeric), (Arabica coffee beans), and (chili peppers) in reducing oxidative stress and inflammation, which are associated with metabolic disorders such as obesity, diabetes, and cardiovascular diseases. Using a systematic design of experiment (DoE) optimization approach, an optimal extract ratio of 1:3:4 (turmeric: coffee: chili) was identified. The efficacy of the extract combination was assessed through various antioxidant assays, inhibition of inflammation-related gene expression, and safety testing via the 3-(4,5-dimethylthazolk-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!