The prion protein is neuroprotective against retinal degeneration in vivo.

Exp Eye Res

Lab for Retinal Cell Biology, Department of Ophthalmology, Center for Integrative Human Physiology (CIHP) and Neuroscience Center (ZNZ), University of Zurich, Frauenklinikstrasse 24, Zürich, Switzerland.

Published: December 2006

A common feature of neurodegenerative disorders is acute or progressive loss of neurons due to apoptosis. The pathological isoform of the prion protein is associated with retinal apoptosis and the cellular isoform (PrPc) has been shown to mediate protection from apoptosis in cell culture and in neonatal retinal explants. Using a model of light-induced photoreceptor apoptosis, we show in vivo that the levels of PrPc expression in the retina inversely correlate with the susceptibility of photoreceptors to light damage. Dissection of apoptotic signalling cascades suggests that PrPc acts neuroprotectively downstream of AP-1 induction. Our results reveal PrP as a neuroprotective/anti-apoptotic factor in vivo and suggest that PrPc may function as a guardian of neuronal integrity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.exer.2006.07.010DOI Listing

Publication Analysis

Top Keywords

prion protein
8
protein neuroprotective
4
neuroprotective retinal
4
retinal degeneration
4
degeneration vivo
4
vivo common
4
common feature
4
feature neurodegenerative
4
neurodegenerative disorders
4
disorders acute
4

Similar Publications

Prions are assemblies of misfolded prion protein that cause several fatal and transmissible neurodegenerative diseases, with the most common phenotype in humans being sporadic Creutzfeldt-Jakob disease (sCJD). Aside from variation of the prion protein itself, molecular risk factors are not well understood. Prion and prion-like mechanisms are thought to underpin common neurodegenerative disorders meaning that the elucidation of mechanisms could have broad relevance.

View Article and Find Full Text PDF

Prion diseases, including Creutzfeldt-Jakob disease (CJD), are deadly neurodegenerative disorders characterized by the buildup of abnormal prion proteins in the brain. This accumulation disrupts neuronal functions, leading to the rapid onset of psychiatric symptoms, ataxia, and cognitive decline. The urgency of timely diagnosis for effective treatment necessitates the identification of strongly correlated biomarkers in bodily fluids, which makes our research crucial.

View Article and Find Full Text PDF

Identification of the Highly Polymorphic Prion Protein Gene () in Frogs ).

Animals (Basel)

January 2025

Department of Biological Sciences, Andong National University, Andong 36729, Republic of Korea.

Prion diseases are fatal neurodegenerative diseases that can be transmitted by infectious protein particles, PrPs, encoded by the endogenous prion protein gene (). The origin of prion seeds is unclear, especially in non-human hosts, and this identification is pivotal to preventing the spread of prion diseases from host animals. Recently, an abnormally high amyloid propensity in prion proteins (PrPs) was found in a frog, of which the genetic variations in the gene have not been investigated.

View Article and Find Full Text PDF

α-Synucleinopathies constitute a spectrum of neurodegenerative disorders, including Parkinson's disease (PD), Lewy body dementia (LBD), Multiple System Atrophy (MSA), and Alzheimer's disease concurrent with LBD (AD-LBD). These disorders are unified by a pathological hallmark: aberrant misfolding and accumulation of α-synuclein (α-syn). This review delves into the pivotal role of α-syn, the key agent in α-synucleinopathy pathophysiology, and provides a survey of potential therapeutics that target cell-to-cell spread of pathologic α-syn.

View Article and Find Full Text PDF

Prion protein modulation of virus-specific T cell differentiation and function during acute viral infection.

Immunohorizons

January 2025

Center for Virus Research, Chao Family Comprehensive Cancer Center, Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California, Irvine, Irvine, CA, United States.

The differentiation and functionality of virus-specific T cells during acute viral infections are crucial for establishing long-term protective immunity. While numerous molecular regulators impacting T cell responses have been uncovered, the role of cellular prion proteins (PrPc) remains underexplored. Here, we investigated the impact of PrPc deficiency on the differentiation and function of virus-specific T cells using the lymphocytic choriomeningitis virus (LCMV) Armstrong acute infection model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!