We have shown previously that lovastatin, a 3-hydroxy-3-methyl- glutaryl coenzyme A reductase inhibitor, induces apoptosis in spontaneously immortalized rat brain neuroblasts. In the present study, we analysed the intracellular signal transduction pathways by which lovastatin induces neuroblast apoptosis. We showed that lovastatin efficiently inhibited Ras activation, which was associated with a significant decrease in ERK1/2 (extracellular-signal-regulated kinase 1/2) phosphorylation. Lovastatin also decreased CREB phosphorylation and CREB-mediated gene expression. The effects of lovastatin on the Ras/ERK1/2/CREB pathway were time- and concentration-dependent and fully prevented by mevalonate. In addition, we showed that two MEK [MAPK (mitogen-activated protein kinase)/ERK kinase] inhibitors, PD98059 and PD184352, were poor inducers of apoptosis in serum-treated neuroblasts. However, these inhibitors significantly increased apoptosis induced by lovastatin treatment. Furthermore, we showed that pharmacological inhibition of both MEK and phosphoinositide 3-kinase activities was able to induce neuroblast apoptosis with similar efficacy as lovastatin. Our results suggest that lovastatin triggers neuroblast apoptosis by regulating several signalling pathways, including the Ras/ERK1/2 pathway. These findings might also contribute to elucidate the intracellular mechanisms involved in the central nervous system side effects associated with statin therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1698684 | PMC |
http://dx.doi.org/10.1042/BJ20060731 | DOI Listing |
Int J Med Sci
January 2025
Department of Emergency Medicine, Chi Mei Medical Center, Tainan, Taiwan.
Effective therapies for cognitive impairments induced by brain irradiation are currently lacking. This study investigated the therapeutic potential of hyperbaric oxygen therapy (HBOT) for radiation-induced brain injury in a randomized controlled experimental model using adult male Wistar rats. Adult male Wistar rats were divided into four experimental groups: 0 Gy whole brain radiotherapy (WBRT) with normal baric air (NBA) treatment, 0 Gy WBRT with HBOT, 10 Gy WBRT with NBA, and 10 Gy WBRT with HBOT.
View Article and Find Full Text PDFBiomaterials
April 2025
Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan. Electronic address:
Traumatic brain injury (TBI) presents substantial clinical challenges, as existing treatments are unable to reverse damage or effectively promote brain tissue regeneration. Although implantable biomaterials have been proposed to support tissue repair by mitigating the adverse microenvironment in injured brains, many fail to replicate the complex composition and architecture of the native extracellular matrix (ECM), resulting in only limited therapeutic outcomes. This study introduces an innovative approach by developing a mesenchymal stem cell (MSC) spheroid-derived three-dimensional (3D) decellularized ECM (dECM) that is enriched with the MSC-derived matrisome and secretome, offering a promising solution for TBI treatment and brain tissue regeneration.
View Article and Find Full Text PDFElife
October 2024
Institut de Génomique Fonctionnelle de Lyon, ENS de Lyon, CNRS, Univ Lyon 1, Lyon, France.
Neuronal stem cells generate a limited and consistent number of neuronal progenies, each possessing distinct morphologies and functions, which are crucial for optimal brain function. Our study focused on a neuroblast (NB) lineage in known as Lin A/15, which generates motoneurons (MNs) and glia. Intriguingly, Lin A/15 NB dedicates 40% of its time to producing immature MNs (iMNs) that are subsequently eliminated through apoptosis.
View Article and Find Full Text PDFThe brain is consisted of diverse neurons arising from a limited number of neural stem cells. neural stem cells called neuroblasts (NBs) produces specific neural lineages of various lineage sizes depending on their location in the brain. In the visual processing centre - the optic lobes (OLs), medulla NBs derived from the neuroepithelium (NE) give rise to neurons and glia cells of the medulla cortex.
View Article and Find Full Text PDFCells
May 2024
Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA.
Mitochondrial aldehyde dehydrogenase-2 (ALDH2) metabolizes acetaldehyde to acetate. People with ALDH2 deficiency and -knockout (KO) mice are more susceptible to alcohol-induced tissue damage. However, the underlying mechanisms behind ALDH2-related gut-associated brain damage remain unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!