Molecular symmetry is a key parameter which dictates the NMR chemical shielding anisotropy (CSA). Whereas correlations between specific geometrical features of molecules and the CSA are known, the quantitative correlation with symmetry--a global structural feature--has been unknown. Here we demonstrate a CSA/symmetry quantitative relation for the first time: We study how continuous deviation from exact symmetry around a nucleus affects its shielding. To achieve this we employed the continuous symmetry measures methodology, which allows one to quantify the degree of content of a given symmetry. The model case we use for this purpose is a population of distorted SiH(4) structures, for which we follow the (29)Si CSA as a function of the degree of tetrahedral symmetry and of square-planar symmetry. Quantitative correlations between the degree of these symmetries and the NMR shielding parameters emerge.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.200600331 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!