The repressilator is a regulatory cycle of n genes where each gene represses its successor in the cycle: [see text]. The system is modelled by ODEs for an arbitrary number of identical genes and arbitrarily strong repressor binding. A detailed mathematical analysis of the dynamical behavior is provided for two model systems: (i) a repressilator with leaky transcription and single-step cooperative repressor binding, and (ii) a repressilator with auto-activation and cooperative regulator binding. Genes are assumed to be present in constant amounts, transcription and translation are modelled by single-step kinetics, and mRNAs as well as proteins are assumed to be degraded by first order reactions. Several dynamical patterns are observed: multiple steady states, periodic and aperiodic oscillations corresponding to limit cycles and heteroclinic cycles, respectively. The results of computer simulations are complemented by a detailed and complete stability analysis of all equilibria and of the heteroclinic cycle.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00285-006-0035-9DOI Listing

Publication Analysis

Top Keywords

repressor binding
8
generalized model
4
repressilator
4
model repressilator
4
repressilator repressilator
4
repressilator regulatory
4
regulatory cycle
4
cycle genes
4
genes gene
4
gene represses
4

Similar Publications

In , the causative agent of Lyme disease, differential gene expression is primarily governed by the alternative sigma factor RpoS (σ). Understanding the regulation of RpoS is crucial for elucidating how is maintained throughout its enzootic cycle. Our recent studies have shown that the homolog of Fur/PerR repressor/activator BosR functions as an RNA-binding protein that controls the mRNA stability.

View Article and Find Full Text PDF

Gene fusions involving JAZF1 are a recurrent event in low grade endometrial stromal sarcoma, and have been more recently described in few instances of endometrial stromal sarcoma-like tumors in the genitourinary tract of men. In this article, we describe a previously unreported spindle cell sarcoma harboring an in-frame JAZF1::NUDT5 gene fusion, arising in the chest wall of a 51-year-old man. The tumor had unique morphologic features resembling both endometrial stromal sarcoma and endometrial stromal sarcoma-like tumors, consisting of a mixture of cytologically bland and pleomorphic spindle cells with brisk mitotic activity, within an alternating myxoid and fibrous stroma.

View Article and Find Full Text PDF

Dual Oxygen-Responsive Control by RegSR of Nitric Oxide Reduction in the Soybean Endosymbiont .

Antioxid Redox Signal

January 2025

Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Granada, Spain.

To investigate the role of the RegSR-NifA regulatory cascade in the oxygen control of nitric oxide (NO) reduction in the soybean endosymbiont . We have performed an integrated study of expression and NO reductase activity in , , , , and mutants in response to microoxia (2% O) or anoxia. An activating role of RegR and NifA was observed under anoxia.

View Article and Find Full Text PDF

Abundant repressor binding sites in human enhancers are associated with the fine-tuning of gene regulation.

iScience

January 2025

Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.

The regulation of gene expression relies on the coordinated action of transcription factors (TFs) at enhancers, including both activator and repressor TFs. We employed deep learning (DL) to dissect HepG2 enhancers into positive (PAR), negative (NAR), and neutral activity regions. Sharpr-MPRA and STARR-seq highlight the dichotomy impact of NARs and PARs on modulating and catalyzing the activity of enhancers, respectively.

View Article and Find Full Text PDF

A promising future for breast cancer therapy with hydroxamic acid-based histone deacetylase inhibitors.

Bioorg Chem

January 2025

Department of In Vitro Carcinogenesis and Cellular Chemotherapy, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India. Electronic address:

Histone deacetylases (HDACs) play a critical role in chromatin remodelling and modulating the activity of various histone proteins. Aberrant HDAC functions has been related to the progression of breast cancer (BC), making HDAC inhibitors (HDACi) promising small-molecule therapeutics for its treatment. Hydroxamic acid (HA) is a significant pharmacophore due to its strong metal-chelating ability, HDAC inhibition properties, MMP inhibition abilities, and more.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!