Molecular phylogeny of the subfamily Tephritinae (Diptera: Tephritidae) based on mitochondrial 16S rDNA sequences.

Mol Cells

Department of Life Science, College of Liberal Arts and Sciences, Yonsei University, Wonju 220-710, Korea.

Published: August 2006

The phylogeny of the subfamily Tephritinae (Diptera: Tephritidae) was reconstructed from mitochondrial 16S ribosomal RNA gene sequences using 53 species representing 11 currently recognized tribes of the Tephritinae and 10 outgroup species. The minimum evolution and Bayesian trees suggested the following phylogenetic relationships: (1) monophyly of the Tephritinae was strongly supported; (2) a sister group relationship between the Tephritinae and Plioreocepta was supported by the Bayesian tree; (3) the tribes Tephrellini, Myopitini, and Terelliini (excluding Neaspilota) were supported as monophyletic groups; (4) the non-monophyletic nature of the tribes Dithrycini, Eutretini, Noeetini, Tephritini, Cecidocharini, and Xyphosiini; and (5) recognition of 10 putative tribal groups, most of which were supported strongly by the statistical tests of the interior branches. Our results, therefore, convincingly suggest that an extensive rearrangement of the tribal classification of the Tephritinae is necessary. Since our sampling of taxa heavily relied on the current accepted classification, some lineages identified by the present study were severely under-sampled and other possible major lineages of the Tephritinae were probably not even represented in our dataset. We believe that our results provide baseline information for a more rigorous sampling of additional taxa representing all possible major lineages of the subfamily, which is essential for a comprehensive revision of the tephritine tribal classification.

Download full-text PDF

Source

Publication Analysis

Top Keywords

phylogeny subfamily
8
subfamily tephritinae
8
tephritinae diptera
8
diptera tephritidae
8
mitochondrial 16s
8
tribal classification
8
major lineages
8
tephritinae
7
molecular phylogeny
4
tephritidae based
4

Similar Publications

Spiny pocket mice are usually divided into two genera, Heteromys and Liomys, and more recently the latter have been subsumed into the former, leaving subfamily Heteromyinae with one genus. However, this arrangement conveys false equivalency among heteromyines, and does not represent the great morphological, molecular, and ecological diversity in this subfamily. To address this, geometric morphometric methods were used to explore interspecific cranial variation in this subfamily, which were then evaluated in the context of recent phylogenetic and taxonomic findings.

View Article and Find Full Text PDF

Background: The membrane transporters viz. multidrug and toxic compound extrusion (MATE) and aluminum-activated malate transporter (ALMT) are associated with aluminum (Al) tolerance by accelerating secretion of organic acids, which can influence nutrient availability and stress response. However, such transporter families have not yet been reported in lentil under Al stress condition.

View Article and Find Full Text PDF

Vibrio parahaemolyticus is pathogenic to both humans and marine animals. Antimicrobial-resistant (AMR) bacteria have been reported to cause mortalities in shrimp, with phage therapy presenting an alternative and eco-friendly biocontrol strategy for controlling bacterial diseases. Therefore, this study aimed to isolate and characterize phages for their applicability in lysing Vibrio parahaemolyticus.

View Article and Find Full Text PDF

Genome-wide identification of HbVQ proteins and their interaction with HbWRKY14 to regulate the expression of HbSRPP in Hevea brasiliensis.

BMC Genomics

January 2025

National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572025, China.

Background: Valine-glutamine motif-containing proteins (VQ proteins) play important roles in plant growth, development and response to stress. However, information on the VQ gene family in rubber tree (Hevea brasiliensis Muell. Arg.

View Article and Find Full Text PDF

Background: The C-repeat binding factor (CBF)/dehydration-responsive element binding (DREB1) belongs to a subfamily of the AP2/ERF (APETALA2/ethylene-responsive factor) superfamily, which can regulate many physiological and biochemical processes in plants, such as plant growth and development, hormone signal transduction and response to abiotic stress. Although the CBF/DREB1 family has been identified in many plants, studies of the CBF/DREB1 family in alfalfa are insufficient.

Results: In this study, 25 MsCBF genes were identified in the genome of alfalfa ("Zhongmu No.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!