Purpose: Calponin h1 (CNh1), one of the family of actin-binding proteins, stabilizes the filaments of actin and modulates various cellular biological phenotypes. Recent studies revealed the close correlation between the invasive tumor spread and the reduced expression of CNh1 and alpha-smooth muscle actin in the surrounding stromal cells. The purpose of this study is to evaluate the efficacy of i.p. CNh1 gene therapy against peritoneal dissemination of ovarian cancer.

Experimental Design: We used an adenoviral vector to induce the CNh1 gene into peritoneal cells and ovarian cancer cells as a means of enhancing or inducing the expression of alpha-smooth muscle actin as well as CNh1. The efficacy of gene transfer was examined by in vitro cell culture and in vivo animal experiments.

Results: The formation of longer and thicker actin fibers was observed in each transfected cell line, and the localization of these fibers coincided with that of externally transducted CNh1. With respect to changes in cell behavior, the CNh1-transfected peritoneal cells acquired an ability to resist ovarian cancer-induced shrinkage in cell shape; thus, cancer cell invasion through the monolayer of peritoneal cells was inhibited. In addition, CNh1-transfected ovarian cancer cells showed suppressed anchorage-independent growth and invasiveness, the latter of which accompanied impaired cell motility. The concomitant CNh1 transfection into both peritoneal cells and ovarian cancer cells produced an additive inhibitory effect with respect to cancer cell invasion through the peritoneal cell monolayer. By in vivo experiments designed to treat nude mice that had been i.p. inoculated with ovarian cancer cells, we found that the i.p. injected CNh1 adenovirus successfully blocked cancer-induced morphologic changes in peritoneal cell surface and significantly prolonged the survival time of tumor-bearing mice. Moreover, CNh1 adenovirus could successfully enhance the therapeutic effect of an anticancer drug without increase in side effects.

Conclusions: Thus, CNh1 gene therapy against peritoneal dissemination of ovarian cancer is bifunctionally effective (i.e., through inhibitory effects on the infected peritoneal cell layers that suppress cancer invasion and through direct antitumor effects against invasion and growth properties of cancer cells).

Download full-text PDF

Source
http://dx.doi.org/10.1158/1078-0432.CCR-06-0674DOI Listing

Publication Analysis

Top Keywords

ovarian cancer
24
cancer cells
24
peritoneal cell
16
peritoneal cells
16
gene therapy
12
peritoneal dissemination
12
dissemination ovarian
12
cnh1 gene
12
peritoneal
11
cancer
11

Similar Publications

Ovarian cancer (OC) must be detected in its early stages when the mortality rate is the lowest to provide patients with the best chance of survival. Lysophosphatidic acid (LPA) is a critical OC biomarker since its levels are elevated across all stages and increase with disease progression. This paper presents an LPA assay based on a thickness shear mode acoustic sensor with dissipation monitoring that involves a new thiol molecule 3-(2-mercaptoethanoxy)propanoic acid (HS-MEG-COOH).

View Article and Find Full Text PDF

: Pathophysiological variability in patients with cancer is associated with differences in responses to pharmacotherapy. In this work, we aimed to describe the demographic characteristics and hematological, biochemical, and coagulation variables in a large oncology cohort and to develop, optimize, and provide open access to modeling equations for the estimation of variables potentially relevant in pharmacokinetic modeling. : Using data from 1793 patients with cancer, divided into training ( = 1259) and validation ( = 534) datasets, a modeling network was developed and used to simulate virtual oncology populations.

View Article and Find Full Text PDF

Ovarian cancer is the deadliest gynecologic cancer, and with the majority of patients dying within the first five years of diagnosis, new therapeutic options are required. The small guanosine triphosphatase (GTPase) Ras-related nuclear protein (Ran) has been reported to be highly expressed in high-grade serous ovarian cancers (HGSOCs) and associated with poor outcomes. Blocking Ran function or preventing its expression were shown to be promising treatment strategies, however, there are currently no small molecule inhibitors available to specifically inhibit Ran function.

View Article and Find Full Text PDF

Ovarian cancer has the highest mortality rate in the world. Treatment methods are listed as surgery, chemotherapy, and radiotherapy, depending on the stage of cancer, but developing resistance to chemotherapy increases the need for alternative agents that act on the same pathways. The effects of rosmarinic acid (RA) and doxorubicin (DX) on the activation of FOXP3, an important tumor suppressor gene, in OVCAR3 cells were examined.

View Article and Find Full Text PDF

The aim of this study was to determine the effect of Sparstolonin B (SsnB) on cell proliferation and apoptosis in human breast cancer (MCF-7) and human ovarian epithelial cancer (OVCAR-3) cell lines in the presence and absence of estradiol hemihydrate (ES). Phosphoinositol-3 kinase (PI3K), phosphorylated protein kinase B alpha (p-AKT), phosphorylated mTOR (mechanistic target of rapamycin) signaling proteins, and sphingomyelin/ceramide metabolites were also measured within the scope of the study. The anti-proliferative effects of SsnB therapy were evaluated over a range of times and concentrations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!