Inhibitors of tumor angiogenesis and metastasis are increasingly emerging as promising agents for cancer therapy. Recently, heparanase inhibitors have offered a new avenue for such work because heparanase is thought to be critically involved in the metastatic and angiogenic potentials of tumor cells. Here, we report that oligomannurarate sulfate (JG3), a novel marine-derived oligosaccharide, acts as a heparanase inhibitor. Our results revealed that JG3 significantly inhibited tumor angiogenesis and metastasis, both in vitro and in vivo, by combating heparanase activity via binding to the KKDC and QPLK domains of the heparanase molecule. The JG3-heparanase interaction was competitively inhibited by low molecular weight heparin (4,000 Da) but not by other glycosaminoglycans. In addition, JG3 abolished heparanase-driven invasion, inhibited the release of heparan sulfate-sequestered basic fibroblast growth factor (bFGF) from the extracellular matrix, and repressed subsequent angiogenesis. Moreover, JG3 inactivated bFGF-induced bFGF receptor and extracellular signal-regulated kinase 1/2 phosphorylation and blocked bFGF-triggered angiogenic events by directly binding to bFGF. Thus, JG3 seems to inhibit both major heparanase activities by simultaneously acting as a substrate mimetic and as a competitive inhibitor of heparan sulfate. These findings suggest that JG3 should be considered as a promising candidate agent for cancer therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-06-1382DOI Listing

Publication Analysis

Top Keywords

tumor angiogenesis
12
angiogenesis metastasis
12
oligomannurarate sulfate
8
heparanase inhibitor
8
basic fibroblast
8
fibroblast growth
8
growth factor
8
cancer therapy
8
heparanase
7
jg3
6

Similar Publications

Introduction: The role of mast cells (MCs) in clear cell renal carcinoma (ccRCC) is unclear, and comprehensive single-cell studies of ccRCC MCs have not yet been performed.

Methods: To investigate the heterogeneity and effects of MCs in ccRCC, we studied single-cell transcriptomes from four ccRCC patients, integrating both single-cell sequencing and bulk tissue sequencing data from online sequencing databases, followed by validation via spatial transcriptomics and multiplex immunohistochemistry (mIHC).

Results: We identified four MC signature genes (TPSB2, TPSAB1, CPA3, and HPGDS).

View Article and Find Full Text PDF

A novel oncolytic Vaccinia virus armed with IL-12 augments antitumor immune responses leading to durable regression in murine models of lung cancer.

Front Immunol

January 2025

Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China.

Oncolytic vaccinia viruses (VVs) are potent stimulators of the immune system and induce immune-mediated tumor clearance and long-term surveillance against tumor recurrence. As such they are ideal treatment modalities for solid tumors including lung cancer. Here, we investigated the use of VVL-m12, a next-generation, genetically modified, interleukin-12 (IL-12)-armed VV, as a new therapeutic strategy to treat murine models of lung cancer and as a mechanism of increasing lung cancer sensitivity to antibody against programmed cell death protein 1 (α-PD1) therapy.

View Article and Find Full Text PDF

A Three-agent Regimen for Triple Negative Breast Cancer Treatment.

Recent Pat Anticancer Drug Discov

January 2025

Department of Medical Oncology, Affiliated Hospital of Inner Mongolia Medical University, NO1 Tongdao Northern Road, Hohhot, 010050, China.

Background: Triple-negative breast cancer (TNBC) has a poor prognosis with current treatment options. Novel therapeutic strategies are urgently needed to enhance treatment outcomes for TNBC.

Objective: This study evaluated the efficacy of a three-agent regimen compared to existing treatment regimens in a TNBC mouse model, and elucidated its potential mechanisms of action.

View Article and Find Full Text PDF

Breast cancer and its lung metastases pose significant threats to women's health worldwide, impacting their quality of life. Although several therapeutic strategies against breast cancer have been developed, they often cause serious side effects due to their high toxicity and low specificity. Therefore, novel therapeutic strategies that offer potent anti-tumor activity with minimal toxicity are urgently needed to combat the threat of breast cancer and lung metastases.

View Article and Find Full Text PDF

The hypoxic microenvironment is crucial for tumour cell growth and invasiveness. Tumour tissue results from adaptation to reduced oxygen availability. Hypoxia first activates pro-angiogenic signals for alleviation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!