Objectives: Given the demonstrated benefit of euglycemia in critically ill patients as well as the risk for hypoglycemia during insulin infusion in children, we sought to validate a subcutaneous sensor for real-time continuous glucose monitoring in pediatric patients during and after cardiac surgery.

Methods: Children up to 36 months of age who were undergoing cardiac bypass surgery were recruited. After anesthetic induction, a continuous glucose-monitoring system sensor (CGMS, Medtronic Minimed, Northridge, CA) was inserted subcutaneously. Sensors remained in place for up to 72 hours. Arterial blood glucose was measured intermittently in the central laboratory (Bayer Rapidlab 860, Tarrytown, NY). Sensor data, after prospective calibration with 6-hourly laboratory values using the proprietary Medtronic Minimed Guardian RT algorithm, were compared with all laboratory glucose values. Statistical analysis was performed to test whether sensor performance was affected by body temperature, inotrope dose, or body-wall edema.

Results: Twenty patients were enrolled in the study for a total of 40 study days and 246 paired sensor and laboratory glucose values. Consensus error grid analysis demonstrated that 72.0% of sensor value comparisons were within zone A (no effect on clinical action), and 27.6% of comparisons were within zone B (altered clinical action of little or no effect on outcome), with a mean absolute relative deviation of 17.6% for all comparisons. One comparison (0.4%) was in zone C (altered clinical action likely to affect outcome). No significant correlations were found between sensor performance and body temperature, inotrope dose, or body-wall edema. All patients tolerated the sensors well without bleeding or tissue reaction.

Conclusions: Guardian RT real-time subcutaneous blood glucose measurement is safe and potentially useful for continuous glucose monitoring in critically ill children. Subcutaneous sensors performed well in the setting of hypothermia, inotrope use, and edema. These sensors facilitate identifying and following the effects of interventions to control blood glucose.

Download full-text PDF

Source
http://dx.doi.org/10.1542/peds.2006-0347DOI Listing

Publication Analysis

Top Keywords

continuous glucose
12
glucose monitoring
12
blood glucose
12
clinical action
12
real-time continuous
8
glucose
8
monitoring pediatric
8
pediatric patients
8
patients cardiac
8
critically ill
8

Similar Publications

Purpose Of Review: The human circadian system regulates several physiological processes, including metabolism, which becomes significantly disrupted during critical illness. The common use of 24-h continuous nutrition support feeding in the intensive care unit (ICU) may further exacerbate these disruptions; this review evaluates recent evidence comparing continuous and intermittent feeding schedules in critically ill adults.

Recent Findings: Research comparing different feeding schedules in critically ill adults remains limited.

View Article and Find Full Text PDF

For the last 38 years, all neuroprotective agents for patients with ischemic stroke have failed in clinical trials. The innate immune system, particularly microglia, is a much-discussed target for neuroprotective agents. Promising results for neuroprotection by inhibition of integrins with drugs such as natalizumab in animal stroke models have not been translated into clinical practice.

View Article and Find Full Text PDF

Very-low-carbohydrate diets (LCHF; <50g/day) have been debated for their potential to lower pre-exercise muscle and liver glycogen stores and metabolic efficiency, risking premature fatigue. It is also hypothesized that carbohydrate ingestion during prolonged exercise delays fatigue by increasing carbohydrate oxidation, thereby sparing muscle glycogen. Leveraging a randomized crossover design, we evaluated performance during strenuous time-to-exhaustion (70%⩒O) tests in trained triathletes following 6-week high-carbohydrate (HCLF, 380g/day) or very-low-carbohydrate (LCHF, 40g/day) diets to determine (i) if adoption of the LCHF diet impairs time-to-exhaustion performance, (ii) whether carbohydrate ingestion (10g/hour) 6-12x lower than current CHO fuelling recommendations during low glycogen availability (>15-hour pre-exercise overnight fast and/or LCHF diet) improves time-to-exhaustion by preventing exercise-induced hypoglycemia (EIH; <3.

View Article and Find Full Text PDF

Importance: Medication adherence is important for managing blood pressure (BP), low-density lipoprotein cholesterol (LDL-C), and hemoglobin A1c (HbA1c). Interventions to improve medication adherence are needed.

Objective: To examine the effectiveness of an intervention using algorithmic identification of low medication adherence, clinical decision support to physicians, and pharmacist outreach to patients to improve cardiometabolic medication adherence and BP, LDL-C, and HbA1c control.

View Article and Find Full Text PDF

Background: Apolipoprotein ε4 allele (APOE4) is the strongest genetic risk factor for late-onset Alzheimer's disease (AD) with females having higher risk than males. Compared with non-carriers, cognitively normal, middle-aged APOE4 carriers have lower cerebral blood flow (CBF) decades before clinical symptoms appear. Early intervention to protect CBF would be critical for APOE4 carriers to mitigate AD progression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!