In many animal species, germ-line progenitors associate with gonadal somatic cells to form the embryonic gonads (EGs) that later develop into functional organ producing gametes. To explore the genetic regulation of the germ-line development, we initiated a comprehensive identification and functional analysis of the genes expressed within the EGs. First, we generated a cDNA library from gonads purified from Drosophila embryos by FACS. Using this library, we catalogued the genes expressed in the gonad by EST analysis. A total of 17,218 high-quality ESTs representing 3,051 genes were obtained, corresponding to 20% of the predicted genes in the genome. The EG transcriptome is unexpectedly distinct from that of adult gonads and includes an extremely high proportion of retrotransposon-derived transcripts. We verified 101 genes preferentially expressed in the EGs by whole-mount in situ hybridization. Within this subset, 39 and 58 genes were expressed predominantly in germ-line and somatic cells, respectively, whereas four genes were expressed in the both cell lineages. The gonad-enriched genes encompassed a variety of predicted functions. However, genes implicated in SUMOylation and protein translation, including germ-line-specific ribosomal proteins, are preferentially expressed in the germ line, whereas the expression of various retrotransposons and RNAi-related genes are more prominent in the gonadal soma. These transcriptome data are a resource for understanding the mechanism of various cellular events during germ-line development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1559405 | PMC |
http://dx.doi.org/10.1073/pnas.0603767103 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!