Potential roles for hyaluronan and CD44 in kainic acid-induced mossy fiber sprouting in organotypic hippocampal slice cultures.

Neuroscience

Department of Pharmacology, Uniformed Services University, Room C2007, 4301 Jones Bridge Road, Bethesda, MD 20814-4799, USA.

Published: November 2006

The most well-documented synaptic rearrangement associated with temporal lobe epilepsy is mossy fiber sprouting (MFS). MFS is a pronounced expansion of granule cell mossy fiber axons into the inner dentate molecular layer. The recurrent excitatory network formed by MFS is hypothesized to play a critical role in epileptogenesis, which is the transformation of the normal brain into one that is prone to recurrent spontaneous seizures. While many studies have focused on the functional consequences of MFS, relatively few have investigated the molecular mechanisms underlying the increased propensity of mossy fibers to invade the inner molecular layer. We hypothesized that changes in two components of the extracellular matrix, hyaluronan and its primary receptor, CD44, contribute to MFS. Hyaluronan contributes to laminar-specificity in the hippocampus and increases in hyaluronan and CD44 are associated with temporal lobe epilepsy. We tested our hypothesis in an in vitro model of MFS using a combination of histological and biochemical approaches. Application of kainic acid (KA) to organotypic hippocampal slice cultures induced robust MFS into the inner dentate molecular layer compared with vehicle-treated controls. Degradation of hyaluronan with hyaluronidase significantly reduced but did not eliminate KA-induced MFS, suggesting that hyaluronan played a permissive role in MFS, but that loss of hyaluronan signaling alone was not sufficient to block mossy fiber reorganization. Comparison of CD44 expression with MFS revealed that when CD44 expression in the molecular layers was high, MFS was minimal and when CD44 expression/function was reduced following KA treatment or with function blocking antibodies, MFS was increased. The time course of KA-induced reductions in CD44 expression was identical to the temporal progression of KA-induced MFS reported previously in hippocampal slice cultures, suggesting that reduced CD44 expression may help promote MFS. Understanding the molecular mechanisms underlying MFS may lead to therapeutic interventions that limit epileptogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroscience.2006.07.037DOI Listing

Publication Analysis

Top Keywords

mossy fiber
16
cd44 expression
16
mfs
15
hippocampal slice
12
slice cultures
12
molecular layer
12
cd44
8
hyaluronan cd44
8
fiber sprouting
8
organotypic hippocampal
8

Similar Publications

Effects of MeCP2 on chronic seizures and cognitive function in mice with temporal lobe epilepsy.

Epilepsy Res

January 2025

Institute of Neurobiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an City 710061, China; Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an City 710061, China. Electronic address:

Mutations in methyl CpG binding protein 2 (MeCP2) are linked to Rett syndrome, in which epilepsy is one of the most well-described disorders. However, little is known about the specific role of MeCP2 during epileptogenesis. Our previous study has demonstrated that MeCP2 has a unique control on the development of mossy fiber sprouting (MFS) in the epileptic hippocampus.

View Article and Find Full Text PDF

A strong repetitive stimulus can occasionally enhance axonal excitability, leading to the generation of afterdischarge. This afterdischarge outlasts the stimulus period and originates either from the physiological spike initiation site, typically the axon initial segment, or from ectopic sites for spike generation. One of the possible mechanisms underlying the stimulus-induced ectopic afterdischarge is the local depolarization due to accumulated potassium ions surrounding the axonal membranes of the distal portion.

View Article and Find Full Text PDF

Unipolar brush cells (UBCs) are excitatory interneurons in the cerebellar cortex that receive mossy fiber (MF) inputs and excite granule cells. The UBC population responds to brief burst activation of MFs with a continuum of temporal transformations, but it is not known how UBCs transform the diverse range of MF input patterns that occur in vivo. Here, we use cell-attached recordings from UBCs in acute cerebellar slices to examine responses to MF firing patterns that are based on in vivo recordings.

View Article and Find Full Text PDF

Staining brain slices with acetoxymethyl ester (AM) Ca dyes is a straightforward procedure to load multiple cells, and Fluo-4 is a commonly used high-affinity indicator due to its very large dynamic range. It has been shown that this dye preferentially stains glial cells, providing slow and large Ca transients, but it is questionable whether and at which temporal resolution it can also report Ca transients from neuronal cells. Here, by electrically stimulating mouse hippocampal slices, we resolved fast neuronal signals corresponding to 1%-3% maximal fluorescence changes.

View Article and Find Full Text PDF

Regulation of dentate gyrus pattern separation by hilus ectopic granule cells.

Cogn Neurodyn

December 2025

State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, #10 Xitucheng Road, Beijing, 100876 People's Republic of China.

The dentate gyrus (DG) in hippocampus is reported to perform pattern separation, converting similar inputs into different outputs and thus avoiding memory interference. Previous studies have found that human and mice with epilepsy have significant pattern separation defects and a portion of adult-born granule cells (abGCs) migrate abnormally into the hilus, forming hilus ectopic granule cells (HEGCs). For the lack of relevant pathophysiological experiments, how HEGCs affect pattern separation remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!