The aim of this study was to assess the efficacy of poly(N-isopropylacrylamide-co-acrylic acid) (p(NiPAAm-co-AAc)) as an injectable drug delivery vehicle and a cell therapeutic agent in the form of a supporting matrix for the chondrogenic differentiation of rabbit chondrocytes. The p(NiPAAm-co-AAc) hydrogel itself without specific differentiation-inducing drugs was used as a control in order to determine the effects of these materials on chondrogenic differentiation. The level of cartilage associated extracellular matrix (ECM) proteins was examined by immunohistochemical staining for collagen type II as well as Safranin-O and Alcian blue (GAG) staining. These results highlight the potential of a thermo-reversible hydrogel mixed with chondrocytes and differentiation materials as an injectable delivery vehicle for use in neocartilage formation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2006.08.012DOI Listing

Publication Analysis

Top Keywords

thermo-reversible hydrogel
8
rabbit chondrocytes
8
delivery vehicle
8
chondrogenic differentiation
8
delivery dexamethasone
4
dexamethasone ascorbate
4
ascorbate growth
4
growth factor
4
factor tgf
4
tgf beta-3
4

Similar Publications

Biocompatible dually reinforced gellan gum hydrogels with selective antibacterial activity.

Carbohydr Polym

March 2025

School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, PR China. Electronic address:

The poor mechanics and functionality of natural-polymer hydrogels from gellan gum (GG) prohibit their practical application, despite the intrinsic thermo-reversible gelation nature, structural and quality consistency, biocompatibility, biodegradability and sustainability of microbial fermentation-produced GG. Herein, a dual-reinforcing strategy, i.e.

View Article and Find Full Text PDF

A water playground for peptide re-assembly from fibrils to plates.

J Mater Chem B

December 2024

Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via. Giorgieri 1, 34127 Trieste, Italy.

Article Synopsis
  • Short peptides involved in amyloid assembly and disassembly are important for addressing diseases without treatments and creating new bio-based materials.
  • Hydrogels made from these peptides can switch between gel and liquid states when heated and cooled, but most research has overlooked the crucial role of water in these processes.
  • This study focuses on a specific tetrapeptide that forms stable fibrils, which change into lasting plates when heated, highlighting water's significant influence on the structural changes during this transition.
View Article and Find Full Text PDF

Synthesis and characterization of methacryl glycol chitosan as a novel functionally advanced thermogel for biomedical applications.

Int J Biol Macromol

November 2024

Department of Polymer Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea; Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea. Electronic address:

Thermo-responsive hydrogels (thermogels), known for their sol-gel transition capabilities, have garnered significant interest for biomedical applications over recent decades. However, conventional thermogels are hindered by intrinsic physicochemical and functional limitations that impede their broader utility. This study introduces methacryl glycol chitosan (MGC) as a novel thermogel, offering enhanced functionality and addressing these limitations.

View Article and Find Full Text PDF

Gauze or bandages are commonly used to effectively control bleeding during trauma and surgery. However, conventional treatment methods can sometimes lead to secondary damages. In recent years, there has been increased interest in developing adhesive hemostatic hydrogels as a safer alternative for achieving hemostasis.

View Article and Find Full Text PDF

Robust, Efficient, and Recoverable Thermocells with Zwitterion-Boosted Hydrogel Electrolytes for Energy-Autonomous and Wearable Sensing.

Angew Chem Int Ed Engl

July 2024

Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, China.

The rapid growth of flexible quasi-solid-state thermocells (TECs) provides a fresh way forward for wearable electronics. However, their insufficient mechanical strength and power output still hinder their further applications. This work demonstrates a one-stone-two-birds strategy to synergistically enhance the mechanical and thermoelectrochemical properties of the [Fe(CN)]-based TECs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!