Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: Network is unreachable
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: We have recently identified an activation site on (Na+ + K+)-ATPase and found that binding of antibody SSA412 to this specific site of the enzyme markedly augments (Na+ + K+)-ATPase catalytic activity. Demonstration of whether activation of (Na+ + K+)-ATPase affects heart function in animal in vivo was the object of this investigation.
Methods: Male wild-type CD-1 mouse and specific antibody SSA412 were used for the study. A pressure-volume micromanometer-conductance catheter in anesthetized mouse assessed in vivo cardiac functions.
Results: Specific antibody SSA412 infusion in mouse shifted pressure-volume loop leftward with increased stroke volume and enhanced end-systolic elastance. Global systolic parameters such as ejection fraction and cardiac output, and load independent contractile parameters including dP/dtmax/IP, PMX/EDV, Ees, and PRSW, were all increased without any effect on relaxation following administration of SSA412. Cardiac preload indexed by EDV and afterload by ESP did not alter, suggesting that SSA412-enhanced myocardial performance is a direct cardiac effect caused by the activation of (Na+ + K+)-ATPase.
Conclusion: Our study provides the first in vivo physiological evidence to demonstrate that activation of (Na+ + K+)-ATPase induces significant positive inotropic effect in intact animal heart. The finding may lead to new therapeutic strategies for the treatment of heart failure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2006.08.070 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!