Mutations in the cardiac-specific insert of vinculin, metavinculin, rarely cause hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM). Subsequently, a missense mutation in the ubiquitously expressed vinculin was discovered in a patient with obstructive HCM. Microscopic examination of both myectomy specimens from patients bearing genetic defects in metavinculin and vinculin showed a marked reduction of vinculin/metavinculin expression in the intercalated disc, but normal expression in the Z-disc. Given that distinct functional domains were altered by the metavinculin and vinculin mutations, we hypothesized that the intercalated disc-specific reduction of vinculin may stem from left ventricular tract obstruction in general rather than rarely observed perturbations in VCL-encoded vinculin. To test this hypothesis, we examined the localization of vinculin/metavinculin in hypertrophied human heart tissue from patients with cardiovascular conditions associated with obstruction and hemodynamic overload using an immunohistochemistry approach. Tissue specimens derived from patients with obstructive HCM and aortic stenosis (AS) showed a universal defect of vinculin/metavinculin expression in the intercalated disc but preserved expression in the cardiac Z-disc, whereas tissue specimens derived from patients with either DCM, hypertensive heart disease (HTN), or pulmonary hypertension (PHTN) exhibited normal expression of vinculin/metavinculin in both the Z- and the intercalated disc despite being associated with hypertrophy. Results of this study suggest that cardiac hypertrophy may be associated with different expression of the marker vinculin/metavinculin depending on the underlying pathophysiology; hemodynamic overload may not affect the localization whereas obstructive disease substantially reduces the expression of vinculin preferentially in the intercalated disc.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2006.08.106 | DOI Listing |
J Cell Sci
October 2024
Amsterdam UMC, University of Amsterdam, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, 1105 AZ, Amsterdam, The Netherlands.
Studies utilizing electron microscopy and live fluorescence microscopy have significantly enhanced our understanding of the molecular mechanisms that regulate junctional dynamics during homeostasis, development and disease. To fully grasp the enormous complexity of cell-cell adhesions, it is crucial to study the nanoscale architectures of tight junctions, adherens junctions and desmosomes. It is important to integrate these junctional architectures with the membrane morphology and cellular topography in which the junctions are embedded.
View Article and Find Full Text PDFEMBO Rep
November 2024
Univ Paris-Est Créteil, INSERM, U955 IMRB, F-94010, Créteil, France.
bioRxiv
September 2024
Department of Molecular Physiology and Biological Physics, University of Virginia, USA.
Caveolin is a monotopic integral membrane protein, widely expressed in metazoa and responsible for constructing enigmatic membrane invaginations known as caveolae. Recently, the high-resolution structure of a purified human caveolin assembly, the CAV1-8S complex, revealed a unique organization of 11 protomers arranged in a tightly packed, radially symmetric spiral disc. One face and the outer rim of this disc are highly hydrophobic, suggesting that the complex incorporates into membranes by displacing hundreds of lipids from one leaflet.
View Article and Find Full Text PDFARYA Atheroscler
January 2024
Cardiovascular research center, Shiraz University of Medical Sciences, Shiraz, Iran.
Background: A structural heart disease or functional electrical abnormalities can cause an electrical storm.
Case Presentation: We present a young boy with an electrical storm who had no cardiac risk factors and a positive family history of sudden cardiac death. The stepwise diagnostic approach was ineffective in determining previously known causes as the origin of the electrical storm.
Front Immunol
August 2024
Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil.
Background: Cardiac arrhythmias are the main cause of sudden death due to Chronic Chagasic Cardiomyopathy (CCC). Here we investigated alterations in connexin 43 (Cx43) expression and phosphorylation in cardiomyocytes as well as associations with cardiac arrhythmias in CCC.
Methods: C57Bl/6 mice infected with underwent cardiac evaluations at 6 and 12 months after infection via treadmill testing and EKG.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!