Two regions of human genomic DNA, each containing several keratin genes, were isolated and partially sequenced. The keratin genes are inactive, having suffered deleterious mutations. Both regions contain at least four keratin genes arranged in a head-to-tail orientation including a pseudogene for keratin K#16. Within each segment there are two keratin genes in close linkage with only 1.5 kb of DNA between them. Sequence comparison of the two regions showed 98.9% identity in both the coding and the intronic segments of the pseudogenes. The pseudogenes show 94% identity to their functional counterparts. Southern hybridization analysis showed that the segments are paralogous, not allelic. The regions are products of two independent, recent duplication events. The first occurred approximately 24 million years ago, after the separation of primates from the rhesus/baboon line. The second is specific for the human lineage, having occurred approximately 3.8 million years ago. Analysis of the genomic DNAs of primates showed the presence of only one of the regions in the DNAs of gibbon and gorilla, while rhesus monkey and baboon were missing both copies. We conclude that the human keratin genes are still actively evolving, with new duplications having occurred as recently as after the separation of human and gorilla ancestors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0888-7543(90)90174-sDOI Listing

Publication Analysis

Top Keywords

keratin genes
24
occurred years
8
years ago
8
keratin
7
genes
6
human
5
regions
5
three parallel
4
parallel linkage
4
linkage groups
4

Similar Publications

Significance of KLK7 expression, polymorphisms, and function in sheep horn growth.

BMC Genomics

January 2025

State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China.

Background: Sheep horns play a critical role in the survival and reproduction of sheep. Research on sheep horns not only aids in comprehending their biological roles but is also vital for developing hornless breeds. Although previous studies have suggested that KLK7 may be associated with keratin growth, there are few studies that have focused on the role of KLK7 in sheep horns.

View Article and Find Full Text PDF

Background: The skin, with its robust structural integrity and advanced immune defense system, serves as a critical protective barrier against environmental toxins and carcinogenic compounds. Despite this, it remains vulnerable to the harmful effects of certain hazardous agents.

Objectives: This study aimed to investigate the chemopreventive potential of β-caryophyllene (BCP) in mitigating 7,12-dimethylbenz[a]anthracene (DMBA)-induced skin carcinogenesis, focusing on the modulation of apoptosis and PI3K/AKT signaling pathways.

View Article and Find Full Text PDF

Screening for transcriptomic associations with Swine Inflammation and Necrosis Syndrome.

BMC Vet Res

January 2025

Department of Veterinary Clinical Sciences, Clinic for Swine, Justus-Liebig-University, Frankfurter Strasse 112, D-35392, Giessen, Germany.

Background: The recently identified swine inflammation and necrosis syndrome (SINS) affects tail, ears, teats, coronary bands, claws and heels of affected individuals. The primarily endogenous syndrome is based on vasculitis, thrombosis, and intimal proliferation, involving defence cells, interleukins, chemokines, and acute phase proteins and accompanied by alterations in clinical chemistry, metabolome, and liver transcriptome. The complexity of metabolic alterations and the influence of the boar led to hypothesize a polygenic architecture of SINS.

View Article and Find Full Text PDF

The extracellular matrix (ECM) and its primary chemical components, including collagen, play a pivotal role in carcinogenesis and tumor progression. The ECM actively regulates cell proliferation, migration, and, importantly, resistance to various adverse factors. It is widely recognized as a key factor in modifying the resistance of tumor cells to various treatment modalities and cytotoxic compounds.

View Article and Find Full Text PDF

The aim of this study was to investigate how ultraviolet B (UVB) light regulates AP-1 expression via the β2-adrenergic receptor (β2-AR) in epidermal keratinocytes, which in turn regulates melanin synthesis in melanocytes, thereby modulating downstream melanin production in skin hair follicles and altering mouse skin color. We established a UV-irradiated mouse model to investigate the effects of UV radiation on changes in skin color. By measuring changes in the expression of genes related to cutaneous sympathetic nerves, norepinephrine synthesis and melanin synthesis, we investigated the relationship between β2-AR expression and cutaneous melanogenesis and determined the localization of β2-AR in cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!