Hippophae rhamnoides or seabuckthorn is used extensively in Indian and Tibetan traditional medicine for the treatment of circulatory disorders, ischemic heart disease, hepatic injury, and neoplasia. In the present study, we have evaluated the radioprotective potential of REC-1001, a fraction isolated from the berries of H. rhamnoides. Chemical analysis of the extract indicated that REC-1001 was approximately 68% by weight polyphenols, and contained kaempferol, isorhamnetin, and quercetin. The effect of REC-1001 on modulating radiation-induced DNA damage was determined in murine thymocytes by measuring nonspecific nuclear DNA damage at the whole genome level using the alkaline halo assay and by measuring sequence/gene-specific DNA damage both in nuclear DNA (beta-globin gene) and in mitochondrial DNA using a quantitative polymerase chain reaction. Treatment with 10 Gy resulted in a significant amount of DNA damage in the halo assay and reductions in the amplification of both the beta-globin gene and mitochondrial DNA. REC-1001 dose-dependently reduced the amount of damage detected in each assay, with the maximum protective effects observed at the highest REC-1001 dose evaluated (250 micro g/ml). Studies measuring the nicking of naked plasmid DNA further established the radioprotective effect of REC-1001. To elucidate possible mechanisms of action, the antioxidant properties and the free-radical scavenging activities of REC-1001 were evaluated. REC-1001 dose-dependently scavenged radiation-induced hydroxyl radicals, chemically-generated superoxide anions, stabilized DPPH radicals, and reduced Fe(3+) to Fe(2+). The results of the study indicate that the REC-1001 extract of H. rhamnoides protects mitochondrial and genomic DNA from radiation-induced damage. The polyphenols/flavonoids present in the extract might be responsible for the free radical scavenging and DNA protection afforded by REC-1001.

Download full-text PDF

Source
http://dx.doi.org/10.1002/em.20251DOI Listing

Publication Analysis

Top Keywords

dna damage
20
dna
11
rec-1001
10
mitochondrial genomic
8
genomic dna
8
hippophae rhamnoides
8
nuclear dna
8
halo assay
8
beta-globin gene
8
gene mitochondrial
8

Similar Publications

Some patients with metastatic castration-resistant prostate cancer (mCRPC) possess germline or acquired defects in the DNA damage repair (DDR) genes BRCA1 and BRCA2. Tumors with BRCA mutations exhibit sensitivity to poly-ADP ribose polymerase inhibitors (PARPi) such as olaparib and rucaparib. As a result, molecular diagnostic testing to identify patients with BRCA mutations eligible for the PARPi therapy has become an integral component of managing patients with mCRPC.

View Article and Find Full Text PDF

The present systematic review aims to put together human population studies that include some relationship between genetic polymorphisms and genotoxicity as well as to evaluate the quality of the published studies induced by cigarette smoke exposure in vivo. The present systematic review was built according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria. Different genotoxicity assays were used by different authors, although the major goal was the genotoxicity assessment by means of micronucleus, comet, sister chromatid exchange, and chromosomal aberration assays.

View Article and Find Full Text PDF

Breast cancer patients experience more severe emotional distress and depression compared to those with other cancers. Selective serotonin reuptake inhibitors (SSRIs), like citalopram, are commonly used to treat depression. However, the link between SSRI use and breast cancer progression is debated.

View Article and Find Full Text PDF

SRT3025-loaded cell membrane hybrid liposomes (3025@ML) enhanced anti-tumor activity of Oxaliplatin via inhibiting pyruvate kinase M2 and fatty acid synthase.

Lipids Health Dis

January 2025

Department of Urology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, China.

Background: Bladder cancer is one of the most common malignancies of the urinary system. Despite significant advances in diagnosis and treatment, the compromised therapeutic effect of chemotherapeutic agents, such as Oxaliplatin (OXA), remains a major clinical challenge. Thus, a combination therapy is required to enhance the OXA's therapeutic effectiveness and improve patient outcomes.

View Article and Find Full Text PDF

Bladder cancer often recurs, necessitating innovative treatments to reduce recurrence. We investigated non-thermal plasma's potential as a novel anti-cancer therapy, focusing on plasma-activated solution (PAS), created by exposing saline to non-thermal plasma. Our study aims to elucidate the biological effects of PAS on bladder cancer cell lines in vitro, as well as the combination with mitomycin C (MMC), using clinically relevant settings.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!