B lymphocytes play a pivotal role in the pathogenesis of systemic lupus erythematosus (SLE). Here, we will review our studies on the role of polymorphisms of two genes coding for B cell inhibitory receptors, FCGR2B and CD72. In FCGR2B, a single nucleotide polymorphism leading to a nonsynonymous substitution, Ile232Thr, within the transmembrane domain was identified, and a significant association of the 232Thr/Thr genotype with SLE was observed in Japanese, Thai and Chinese populations, while this allele was found to be rare in Caucasians. On the other hand, the association of FCGR2B promoter polymorphism with SLE in Caucasians has been reported by two independent groups, but this allele was not found to be present in Japanese. These observations demonstrate that the association of FCGR2B polymorphisms with SLE is common to multiple populations, but the alleles associated with SLE depend upon the genetic background of each population. Functional analyses using a human B cell line lacking endogenous FcgammaRIIb revealed that SLE-associated 232Thr allele product was partially excluded from membrane lipid rafts under resting conditions and after coligation with B cell receptor, and was significantly less potent at inhibiting B cell activation. Two haplotypes were identified in CD72, one of which was associated with increased production of an alternative splicing isoform that substantially alters the extracellular region of CD72. Interestingly, the presence of the haplotype significantly decreased the risk of SLE conferred by FCGR2B-232Thr in an epistatic manner. These observations emphasize the need to understand human immune system diversity if we are to improve our understanding of the pathogenesis of autoimmune diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10038-006-0030-4 | DOI Listing |
Int J Biol Macromol
January 2025
College of Life Science, Yangtze University, Jingzhou, China. Electronic address:
Tyrosinase is a rate-limiting enzyme for melanogenesis and abnormal melanin production can be controlled by utilizing tyrosinase inhibitory substances. To develop potent and safe inhibitors of tyrosinase, complex tannins a narrowly distributed plant polyphenols were prepared from the fruit peel of Euryale ferox (EPTs) and then structurally characterized, as well as investigated for their inhibitory effects and the involved mechanisms against tyrosinase activity and melanogenesis. The structures of EPTs were established to consist of 63.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
TriArm Therapeutics, Niudun Road 200, 201203 Shanghai, China. Electronic address:
Background: The immunosuppressive microenvironment negatively affects the efficacy of chimeric antigen receptor T (CAR-T) cells in solid tumors. Fusion protein that combining extracellular domain of inhibitory checkpoint protein and the cytoplasmic domain of stimulatory molecule may improve the efficacy of CAR-T cells by reversing the suppressive signals.
Methods: To generate optimal PD1-TLR10 fusion proteins, PD1 extracellular domain and TLR10 intracellular domain were connected by transmembrane domain from PD1, CD28, or TLR10, respectively.
J Mycol Med
December 2024
Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran; Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran. Electronic address:
Introduction: Nakaseomyces glabratus is considered a high priority of attention according to WHO, and also is an important yeast species due to its high rate of intrinsic/acquired resistance against fluconazole. This study aimed at the possible mechanisms of action of thymol, as the promising new antifungal agent, in N. glabratus.
View Article and Find Full Text PDFEur J Med Chem
January 2025
China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science and Technology, Tianjin, 300457, China. Electronic address:
A series of isatin derivatives which could inhibit colorectal cancer (CRC) were synthesized. Among those compounds, 5B exhibited good inhibitory activity of CRC through the inhibition of tubulin expression, inducing apoptosis, and causing G2/M phase cell cycle arrest pathway, which suggested that 5B could be a potential tubulin inhibitor. Based on that, a novel peptide-drug conjugate (PDC), which employed the CRC cells related receptor CD44 ligand peptide A6 coupling to 5B to accomplish A6-5B.
View Article and Find Full Text PDFEur J Med Chem
January 2025
Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, SE, 17165, Sweden; Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, UK. Electronic address:
Clear cell renal cell carcinoma (ccRCC) presents substantial therapeutic challenges due to its molecular heterogeneity, limited response to conventional therapies, and widespread drug resistance. Recent advancements in molecular research have identified novel targets, such as BUB1B, which has been identified through global transcriptomic profiling and gene co-expression network analysis as critical in ccRCC progression. In this study, we synthesized 40 novel derivatives of TG-101209 to modulate BUB1B expression and activity, leading to the induction of apoptosis in Caki-1 cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!