Coumarin 7-hydroxylation (COH), which is catalyzed almost solely by human CYP2A6 and mouse CYP2A5, shows large differences in activity (humans>>mice) and inhibitor specificity between mice and humans. To differentiate human and mouse liver functions of chimeric mice (CM1, CM2 and CM3) prepared with hepatocytes from 3 donors, the microsomal COH activities were measured with and without benzaldehyde and undecanoic gamma-lactone as a specific inhibitor of human CYP2A6 and mice CYP2A5, respectively. The replacement % to human hepatocytes designated as replacement index (RI) was calculated from human specific cytokeratin 8/18 expression in the liver section. The COH activities correlated well with RIs in CM2 (R(2)=0.98) and CM3 (R(2)=0.94), except CM1 whose genotype of donor is CYP2A6*4/*4. However, the COH activities expressed as % of donor activities were not always coincident with RIs, and the inhibition pattern of CM2 and CM3 was human-type after RI exceeded approximately 50%. Subsequently, our attempts to use % of COH activities or inhibition patterns as an accurate functional replacement index were unsuccessful. Since the detection of human CYP2A6 protein in the liver and the steep increase of human albumin (hAlb) levels in the blood were begun from almost RI=50% similarly to the changes of inhibition pattern, RI=50% is the turning point for chimeric mice to have humanized liver function.

Download full-text PDF

Source
http://dx.doi.org/10.2133/dmpk.21.277DOI Listing

Publication Analysis

Top Keywords

human cyp2a6
16
coh activities
16
chimeric mice
12
humanized liver
8
human
8
cyp2a6 mouse
8
mouse cyp2a5
8
cm2 cm3
8
inhibition pattern
8
liver
5

Similar Publications

Inter-individual variability in drug responses is significantly influenced by genetic factors, underscoring the importance of population-specific pharmacogenomic studies to optimize clinical outcomes. In this study, we analyzed whole genome sequencing data from 949 unrelated Thai individuals and conducted an in-depth analysis of 3239 genes involved in drug pharmacokinetics, pharmacodynamics, or immune-mediated adverse drug reactions. We identified 43 single nucleotide polymorphisms (SNPs), 134 diplotypes, and 15 human leukocyte antigen (HLA) alleles, all with moderate to high clinical significance.

View Article and Find Full Text PDF

Background: Chronic obstructive pulmonary disease (COPD) is closely linked to lung cancer (LC) development. The aim of this study is to identify the genetic and clinical risk factors for LC risk in COPD, according to which the prediction model for LC in COPD was constructed.

Methods: This is a case-control study in which patientis with COPD + LC as the case group, patientis with only COPD as the control group, and patientis with only LC as the second control group.

View Article and Find Full Text PDF

A systematic review of dexmedetomidine pharmacology in pediatric patients.

Clin Transl Sci

December 2024

Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA.

Dexmedetomidine is a centrally acting alpha-2 agonist used for initiation and maintenance of procedural sedation and mechanical ventilation in adult and pediatric settings. It is commonly used in both pediatric and neonatal intensive care units. Dexmedetomidine requires extensive titration, and patients can be over or under-sedated during titration, leading to adverse events such as hypotension and bradycardia, or inadequate sedation, which can result in self-extubation.

View Article and Find Full Text PDF

Human genes have numerous copy number variations (CNVs) and single-nucleotide polymorphisms (SNPs) that control most of the body's core functions. On average, 12-16 % of human genes have CNVs, and a single gene can have a few hundred to several thousand SNPs. Numerous genome-wide association studies (GWAS) have shown that CNVs and SNPs can coexist in certain genomic regions, amplifying their effects on gene expression and regulation and disease susceptibility.

View Article and Find Full Text PDF

Translational pharmacological research on traditional medicines lays the foundation for precisely understanding how the medicines function in the body to deliver therapeutic benefits. Borneolum syntheticum (Bingpian) is commonly used in Chinese herbal medicines for coronary heart disease, but its specific cardiovascular impact remains poorly understood. Isoborneol, a constituent of Bingpian, has been found to reduce lipid accumulation in macrophages in vitro, but its oral bioavailability is limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!