Role of tyrosine and tryptophan in chemically modified serum albumin on its tissue distribution.

Biol Pharm Bull

Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan.

Published: September 2006

To investigate the effect of functional groups in bovine serum albumin (BSA) on its tissue distribution characteristics, tyrosine (Tyr) or tryptophan (Trp) residues of BSA were chemically modified by tetranitromethane (TNM) and 2-hydroxy-5-nitrobenzyl bromide (HNB), respectively. BSA was successfully modified with each reagent depending on the amount of the reagent added to the reaction mixture, and TNM- and HNB-modified BSA derivatives with different degrees of modification were obtained. Circular dichroism measurements showed that slight secondary and large tertiary changes were detectable as the degree of modification increased. After intravenous injection into mice, all synthetic BSA derivatives were eliminated very slowly from the systemic circulation. However, (111)In-TNM(6.6)- and (111)In-HNB(2.0)-BSA, derivatives with a high degree of modification, showed a slightly faster disappearance from the systemic circulation and slightly higher accumulation in the liver than (111)In-unmodified BSA. Pharmacokinetic analyses also demonstrated that the modification of Tyr or Trp residues on BSA had only marginal effects on tissue distribution. These results indicate that the Tyr and Trp residues have little effect on the tissue distribution characteristics of serum albumins, and that the specific modification of these residues may be a promising approach to designing sustained drug delivery systems using serum albumins.

Download full-text PDF

Source
http://dx.doi.org/10.1248/bpb.29.1926DOI Listing

Publication Analysis

Top Keywords

tissue distribution
16
trp residues
12
chemically modified
8
serum albumin
8
distribution characteristics
8
residues bsa
8
bsa derivatives
8
degree modification
8
systemic circulation
8
tyr trp
8

Similar Publications

Purpose: Orvacabtagene autoleucel (orva-cel; JCARH125), a CAR T-cell therapy targeting B-cell maturation antigen (BCMA), was evaluated in relapsed/refractory multiple myeloma (RRMM) patients in the EVOLVE phase 1/2 study (NCT03430011). We applied a modified piecewise model to characterize orva-cel transgene kinetics and assessed the impact of various covariates on its pharmacokinetics (PK).

Experimental Design: The population PK analysis included 159 patients from the EVOLVE study.

View Article and Find Full Text PDF

Purpose: Mesothelin (MSLN) is highly expressed in high grade serous/ endometrioid ovarian cancers (HGOC). Anetumab ravtansine (AR) is an antibody drug conjugate directed at MSLN antigen with a tubulin polymerization inhibitor. We assessed safety, activity and pharmacokinetics of the combination AR/bevacizumab (Bev) (ARB) versus weekly paclitaxel (wP)/Bev (PB) in patients with platinum resistant/refractory HGOC (prrHGOC).

View Article and Find Full Text PDF

Topiramate is an antiepileptic drug (AED) that is effective in treating various types of epilepsy. This study evaluated the bioequivalence and safety of two topiramate tablets in healthy Chinese subjects under fasting and fed conditions. We designed an open-label, randomized, single-dose, two-period, crossover trial protocol.

View Article and Find Full Text PDF

The application of quantitative systems pharmacology (QSP) has enabled substantial progress and impact in many areas of therapeutic discovery and development. This new technology is increasingly accepted by industry, academia, and solution providers, and is enjoying greater interest from regulators. In this chapter, we summarize key aspects regarding how effective collaboration among institutions and disciplines can support the growth of QSP and expand its application domain.

View Article and Find Full Text PDF

Advances in Organic Fluorescent and Colorimetric Probes for The Detection of Cu and Their Applications in Cancer Cell Imaging (2020-2024).

Crit Rev Anal Chem

January 2025

Department of Oral & Maxillofacial Surgery and Diagnostic Sciences, Faculty of Dentistry, Taif University, Taif, Saudi Arabia.

Organic fluorescence and colorimetric probes have emerged as vital tools for detecting metal ions, due to their high sensitivity, selectivity, and rapid response times. Copper, an essential trace element, plays a critical role in biological systems, yet its imbalance can lead to severe disorders such as neurodegenerative diseases, cancer, and Wilson's disease. Over the past few years, advancements in probe design have unlocked innovative avenues for not only detecting Cu in environmental and biological samples but also for visualizing its distribution through fluorescence imaging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!