Caffeic acid protects hydrogen peroxide induced cell damage in WI-38 human lung fibroblast cells.

Biol Pharm Bull

Department of Biochemistry, College of Medicine and Applied Radiological Science Research Institute, Cheju National University, Jeju-si, Korea.

Published: September 2006

Cytoprotective effect of caffeic acid (3,4-dihydroxy cinnamic acid) on human lung fibroblast (WI-38) cells against hydrogen peroxide induced damage was investigated. Caffeic acid was found to scavenge intracellular reactive oxygen species, and 1,1-diphenyl-2-picrylhydrazyl radical, and thus prevented lipid peroxidation. The caffeic acid protected cell damage of WI-38 cells exposed to hydrogen peroxide (H(2)O(2)), via the activation of extracellular signal regulated kinase protein. Caffeic acid increased the activity of catalase and its protein expression. Hence, from the present study, it is suggestive that caffeic acid protects WI-38 cells against H2O2 damage by enhancing the cellular antioxidant activity.

Download full-text PDF

Source
http://dx.doi.org/10.1248/bpb.29.1820DOI Listing

Publication Analysis

Top Keywords

caffeic acid
24
hydrogen peroxide
12
wi-38 cells
12
acid protects
8
peroxide induced
8
cell damage
8
damage wi-38
8
human lung
8
lung fibroblast
8
caffeic
6

Similar Publications

The mitochondriotropic antioxidants AntiOxBEN and AntiOxCIN are structurally-similar but differentially alter energy homeostasis in human skin fibroblasts.

Biochim Biophys Acta Bioenerg

January 2025

CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.

Mitochondrial dysfunction and increased reactive oxygen species (ROS) generation play an import role in different human pathologies. In this context, mitochondrial targeting of potentially protective antioxidants by their coupling to the lipophilic triphenylphosphonium cation (TPP) is widely applied. Employing a six‑carbon (C) linker, we recently demonstrated that mitochondria-targeted phenolic antioxidants derived from gallic acid (AntiOxBEN) and caffeic acid (AntiOxCIN) counterbalance oxidative stress in primary human skin fibroblasts by activating ROS-protective mechanisms.

View Article and Find Full Text PDF

Biowaste produced in urban parks is composed of large masses of organic matter that is only occasionally used economically. In this work, extracts of six plants widely distributed in urban parks in Central Europe (, , , , , and ), prepared using 10 % and 50 % ethanol, were screened for their antidiabetic and related properties. HPLC and UV-Vis analysis revealed the presence of caffeic acid, quercetin, luteolin, and apigenin derivatives.

View Article and Find Full Text PDF

This study offers considerable information on plant wealth of therapeutic importance used traditionally by the residents of 11 villages under three subdivisions of Kurseong, Darjeeling Sadar, and Mirik in the Darjeeling District, West Bengal. For the acquisition of ethnomedicinal information, semi-structured interviews were conducted with 47 informants, of whom 11 persons were herbalists and 36 were knowledgeable persons. Free prior informed consent was obtained from each participant prior to the collection of field data.

View Article and Find Full Text PDF

Antinociceptive Potential of L. Bark Extract and Caffeic Acid: Insights into Pain Modulation Pathways.

Pharmaceuticals (Basel)

December 2024

Laboratory of Pharmacology and Molecular Chemistry, Department of Chemical Biology, Regional University of Cariri (URCA), Rua Coronel Antônio Luis 1161, Pimenta, Crato 63105-000, Ceará, Brazil.

This study evaluated the antinociceptive effect of the L. bark extract (HEXA) and its primary component, caffeic acid (CA), through in vivo assays. : The antinociceptive properties were assessed using abdominal writhing, hot plate, and Von Frey tests.

View Article and Find Full Text PDF

Ethanolic extracts from the roots and aerial parts of the hitherto chemically uninvestigated lettuce species Willd. (Cichorieae, Asteraceae) were chromatographically separated to obtain eight sesquiterpenoids, two apocarotenoids (loliolide and (6,9) roseoside), and three phenolic glucosides (apigenin 7--glucoside, eugenyl-4---glucopyranoside, and 5-methoxyeugenyl-4---glucopyranoside). Four of the isolated sesquiterpene lactones (8--angeloyloxyleucodin, matricarin, 15-deoxylactucin, and deacetylmatricarin 8--glucopyranoside) have not previously been found either in spp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!