The implementation of efficient technologies for the production of recombinant mammalian membrane receptors is an outstanding challenge in understanding receptor-ligand actions and the development of therapeutic antibodies. In order to improve the solubility of recombinant extracellular domains of human membrane receptors expressed in Escherichia coli, proteins were synthesized by an E. coli in vitro translation system supplemented with bacterial molecular chaperones, such as GroEL-GroES (GroEL/ES), Trigger factor (TF), a DnaK-DnaJ-GrpE chaperone system (DnaKJE), and/or a heat shock protein Hsp100, ClpB. The following three proteins that are prone to aggregation were examined: the extracellular domain (ECD) or the second immunoglobulin-like domain (IgII) of the human neurotrophin receptor TrkC (TrkC-ECD and TrkC-IgII), and the C-type lectin carbohydrate recognition domain of the human asialoglycoprotein receptor (ASGPR HI CRD). The cooperative chaperone system including GroEL/ES, DnaKJE and ClpB had a marked effect on the solubility of TrkC-ECD and TrkC-IgII, and the GroEL/ES-DnaKJE-TF chaperone system was more effective for TrkC-IgII. The GroEL/ES-DnaKJE-TF chaperone network increased the yield of soluble ASGPR HI CRD. The present findings demonstrate that E. coli molecular chaperones are useful in improving the yield of soluble recombinant extracellular domains of human membrane receptors in an E. coli expression system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1385/MB:33:3:199 | DOI Listing |
J Neurol
January 2025
Department of Medical and Surgical Sciences, University of Foggia, 71122, Foggia, Italy.
Background: Multiple sclerosis (MS) involves a complex interplay between immune-mediated inflammation and neurodegeneration. Recent advances in biomarker research have provided new insights into the molecular underpinnings of MS, including ferritin, neurogranin, Triggering Receptor Expressed on Myeloid cells 2 (TREM2), and neurofilaments light chain.
Objectives: This pilot study aims to investigate the levels of these biomarkers in the cerebrospinal fluid (CSF) of MS patients and explore their associations with clinical, cognitive, and optical coherence tomography (OCT) parameters.
Vasc Biol
January 2025
J van Buul, Medical Biochemistry, Amsterdam UMC Locatie AMC, Amsterdam, 1105 AZ, Netherlands.
Objective: Donor liver preservation methods and solutions have evolved over the last years. Liver sinusoidal endothelial cell (LSEC) barrier function and integrity during preservation is crucial for outcomes of liver transplantation. Therefore, the present study aimed to determine optimal preservation of LSEC barrier function and integrity, using different preservation solutions.
View Article and Find Full Text PDFChempluschem
January 2025
Kaiserslautern University of Technology: Rheinland-Pfalzische Technische Universitat Kaiserslautern-Landau, Chemistry, 67663, Kaiserslautern, GERMANY.
We report the synthesis of a series of detergents with a lactobionamide polar head group and a tail containing four to seven perfluorinated carbon atoms. Critical micellar concentrations (CMCs) were determined using isothermal titration calorimetry (ITC) and surface tension (SFT) measurements, showing a progressive decrease from 27 mM to about 0.2 mM across the series.
View Article and Find Full Text PDFActa Neurobiol Exp (Wars)
January 2025
Department of Physiology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran; Bio Environmental Health Hazards Research Center, Jiroft University of Medical Sciences, Jiroft, Iran.
In recent years, growing evidence suggests that lipopolysaccharide (LPS), a bacterial endotoxin found in the outer membrane of gram‑negative bacteria, can influence cognitive functions, particularly memory formation and retrieval. However, the underlying mechanisms through which LPS exerts its effects on memory remain incompletely understood. This review used various electronic databases, including PubMed, Scopus, and Web of Science, to identify relevant studies published between 2000 and 2024.
View Article and Find Full Text PDFACS Chem Neurosci
January 2025
National Center for Natural Products Research, University of Mississippi, University, Mississippi 38677, United States.
Cannabinoid receptor 1 (CB1R) has been extensively studied as a potential therapeutic target for various conditions, including pain management, obesity, emesis, and metabolic syndrome. Unlike orthosteric agonists such as Δ-tetrahydrocannabinol (THC), cannabidiol (CBD) has been identified as a negative allosteric modulator (NAM) of CB1R, among its other pharmacological targets. Previous computational and structural studies have proposed various binding sites for CB1R NAMs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!