Background And Purpose: The pathophysiology of vascular lesions after balloon angioplasty remains poorly understood. A major limitation of most experimental studies in this regard is that injury was assessed in healthy arteries. Our aim was to study the effects of hypercholesterolemia in a mouse vascular injury model that mimics human balloon angioplasty.

Methods: Carotid balloon distension was performed in wild-type (WT) mice on a normal diet (ND), in apolipoprotein E-deficient (ApoE-/-) mice on ND and in ApoE-/- mice fed a high cholesterol diet (CD).

Results: Medial cell death (TUNEL) was elevated in all mice at 1 hour and 1 day after angioplasty without differences between the groups. We found enhanced intimal inflammation (%CD45-positive cells) and vascular cell adhesion molecule-1 expression at 7 days (P < 0.05; n > or = 4) as well as increased proliferation rates (BrdU-index) in ApoE-/- CD at 7 and 28 days postinjury (P < 0.05; n > or = 5). Four weeks after injury, these events led to enhanced neointima in ApoE-/- CD compared with WT ND mice (intima/media, P < 0.001; n > or = 8). The amount of lesion formation paralleled the incremental increase in total plasma cholesterol in WT ND, ApoE-/- ND and ApoE-/- CD (P < 0.01).

Conclusions: Carotid balloon distension injury in ApoE-/- mice on CD induced enhanced inflammation and proliferation leading to increased neointima. Further applications of this microballoon catheter in genetically modified mice will provide opportunities to elucidate molecular mechanisms of vascular lesion formation in a model that reflects clinical balloon angioplasty. This know-how may pave the way to catheter-based interventions of human microvessels in the peripheral or cerebral circulation.

Download full-text PDF

Source
http://dx.doi.org/10.1161/01.STR.0000241068.50156.82DOI Listing

Publication Analysis

Top Keywords

apoe-/- mice
12
inflammation proliferation
8
mice
8
balloon angioplasty
8
carotid balloon
8
balloon distension
8
lesion formation
8
apoe-/-
7
balloon
5
increased balloon-induced
4

Similar Publications

Platelet membrane-modified exosomes targeting plaques to activate autophagy in vascular smooth muscle cells for atherosclerotic therapy.

Drug Deliv Transl Res

January 2025

Center for Coronary Heart Disease, Department of Cardiology, National Center for Cardiovascular Diseases of China, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Rd, Beijing, 100037, China.

Atherosclerosis is one of the leading causes of ischemic cardiovascular disease worldwide. Recent studies indicated that vascular smooth muscle cells (VSMCs) play an indispensable role in the progression of atherosclerosis. Exosomes derived from mesenchymal stem cells (MSCs) have demonstrated promising clinical applications in the treatment of atherosclerosis.

View Article and Find Full Text PDF

Alternate day fasting aggravates atherosclerosis through the suppression of hepatic ATF3 in mice.

Life Metab

June 2024

Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.

Atherosclerosis is the major contributor to cardiovascular mortality worldwide. Alternate day fasting (ADF) has gained growing attention due to its metabolic benefits. However, the effects of ADF on atherosclerotic plaque formation remain inconsistent and controversial in atherosclerotic animal models.

View Article and Find Full Text PDF

Background: Atherosclerosis serves as the fundamental pathology for a variety of cardiovascular disorders, with its pathogenesis being closely tied to the complex interplay among lipid metabolism, oxidative stress, and inflammation. Wogonoside is a natural flavonoid extracted from Scutellaria baicalensis with a variety of biological activities, including anti-inflammatory, hypolipidemic, and cardiac function improvement properties. Despite these known effects, the specific role of wogonoside in the context of atherosclerosis remains to be elucidated.

View Article and Find Full Text PDF

Background: The hypobaric hypoxic atmosphere can cause adverse reactions or sickness. The purpose of this study was to explore the preventive effect and mechanism of human umbilical cord mesenchymal stem cells (hUC-MSCs) on acute pathological injury in mice exposed to high-altitude.

Methods: We pretreated C57BL/6 mice with hUC-MSCs via the tail vein injection, and then the mice were subjected to hypobaric hypoxic conditions for five days.

View Article and Find Full Text PDF

Objective: Aberrant 6-phosphofructo-2kinase/fructose-2,6-bisphoshatase 3 (PFKFB3) expression is tightly correlated with multiple steps of tumorigenesis; however, the pathological significance of PFKFB3 in macrophages in patients with rheumatoid arthritis (RA) remains obscure. In this study, we examined whether PFKFB3 modulates macrophage activation and promotes RA development.

Method: Peripheral blood mononuclear cells (PBMCs) from patients with RA, THP-1 cells, and bone marrow-derived macrophages from conditional PFKFB3-knockout mice were used to investigate the mechanism underlying PFKFB3-induced macrophage regulation of RA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!